

A DECOMPOSITION APPROACH FOR THE

MULTI-MODAL, RESOURCE-CONSTRAINED,

MULTI-PROJECT SCHEDULING PROBLEM

 WITH GENERALIZED PRECEDENCE AND

 EXPEDITING RESOURCES

DISSERTATION

Michael L. Fredley, Major, USAF

AFIT/DS/ENS/01-02

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

 AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Report Documentation Page

Report Date
13 Dec 2001

Report Type
Final

Dates Covered (from... to)
June 1997 - Sept 2001

Title and Subtitle
A Decomposition Approach for the Multi-Modal,
Resource-Constrained, Multi-Project Scheduling
Problem with Generalized Precedence and Expediting
Resources

Contract Number

Grant Number

Program Element Number

Author(s)
Major Michael L. Fredley, USAF

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
Air Force Institute of Technology Graduate School of
Engineering and Management (AFIT/EN) 2950 P
Street, Bldg 640 Wright-Patterson AFB, OH
45433-7765

Performing Organization Report Number
AFIT/DS/ENS/01-02

Sponsoring/Monitoring Agency Name(s) and
Address(es)
Air Force Office of Scientific Research ATTN: Major
Juan R. Vasquez 801 N. Randolph St., Room 933
Arlington, VA 22203-1977

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract
The field of project scheduling has received a great deal of study for many years with a steady evolution
of problem complexity and solution methodologies. As solution methodologies and technologies improve,
increasingly complex, real-world problems are addressed, presenting researchers a continuing challenge to
find ever more effective means for approaching project scheduling. This dissertation introduces a project
scheduling problem which is applicable across a broad spectrum of real-world situations. The problem is
based on the well-known Resource-Constrained Project Scheduling Problem, extended to include multiple
modes, generalized precedence, and expediting resources. The problem is further extended to include
multiple projects which have generalized precedence, renewable and nonrenewable resources, and
expediting resources at the program level. The problem presented is one not previously addressed in the
literature nor is it one to which the existing specialized project scheduling methodologies can be directly
applied. This dissertation presents a decomposition approach for solving the problem, including
algorithms for solving the decomposed subproblems and the master problem. This dissertation also
describes a methodology for generating instances of the new problem, extending the way existing problem
generators describe and construct network structures and this class of problem. The methodologies
presented are demonstrated through extensive empirical testing.

Subject Terms
CPM, Critical Path Method, Decomposition, Network, Network Generator, Program, Program
Management, Project, Project Generator, Project Management, Project Scheduling, Scheduling,
Sweeney-Murphy Decomposition

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
270

The views expressed in this dissertation are those of the author and do not reflect the official policy
or position of the United States Air Force, Department of Defense, or the U. S. Government.

AFIT/DS/ENS/01-02

A DECOMPOSITION APPROACH FOR THE MULTI-MODAL,

RESOURCE-CONSTRAINED, MULTI-PROJECT SCHEDULING PROBLEM

WITH GENERALIZED PRECEDENCE AND EXPEDITING RESOURCES

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

Michael L. Fredley, B.S., M.S.

Major, USAF

September 2001

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/DS/ENS/01-02

A DECOMPOSITION APPROACH FOR THE MULTI-MODAL,

RESOURCE-CONSTRAINED, MULTI-PROJECT SCHEDULING PROBLEM

WITH GENERALIZED PRECEDENCE AND EXPEDITING RESOURCES

Michael L. Fredley, B.S., M.S.
Major, USAF

Approved:

 Date

 Richard F. Deckro (Chairman)

 Aihua W. Wood (Dean’s Representative)

 James W. Chrissis (Member)

 James T. Moore (Member)

 E. Price Smith (Member)

 Accepted:

 Robert A. Calico, Jr. Date
 Dean, Graduate School of Engineering and Management

iv

Acknowledgments

I would like to express my sincere appreciation to my advisor, Dr. Richard F. Deckro, for his

guidance and support throughout the course of this dissertation effort. I am also grateful to those

who have served on my committee, Dr. James W. Chrissis, Dr. James T. Moore, Lt Col E. Price

Smith, Col Jack A. Jackson, and Maj Edward A. Pohl, for the expertise they have shared and for

their patience through this long process. I express my gratitude to my Dean’s representative, Dr.

Aihua W. Wood, for her assistance in finalizing this dissertation and for her contributions during

my defense. Without the mentoring of these outstanding individuals, this dissertation would not

have been possible.

Special thanks to my leadership at the Air Force Studies and Analyses Agency, Col Donald P.

Higgins, Jr., Col Rowayne A. Schatz, and Maj Jeffrey Marcotte, for providing me the resources I

needed to complete this research. Thanks are due, also, to Mr. Steven Sovine who taught me so

much about processes and how to handle large amounts of data, without which my analysis would

have been extremely painful. Finally, I am indebted to my family which has stood by me through

this effort, and every other endeavor I’ve undertaken, and given me the encouragement I needed.

 Michael L. Fredley

v

Table of Contents

 Page

Acknowledgments...iv

List of Figures ..ix

List of Tables ...xi

Abstract...xii

I. Introduction.. 1-1

Overview.. 1-1
Background.. 1-1
Research Issues .. 1-6
Research Objectives ... 1-6
Approach ... 1-8
Summary ... 1-9

II. Literature Review... 2-1

Introduction.. 2-1
Problem Hierarchy ... 2-1
Single-Project Scheduling ... 2-3
 The Project-Scheduling Problem... 2-3
 Resource Constraints.. 2-4
 Mathematical Programming ... 2-7
 Graph-Based Approaches... 2-8
 Implicit Enumeration.. 2-9
 Other Approaches ...2-10
 Activity Crashing ..2-12
 Minimal Cost Project Network Problem ..2-12
 Project Time/Cost Tradeoff Problem ...2-12
 Activity Duration Crashing Problem..2-12
 Multi-Modal, Resource-Constrained Project Scheduling Problem.......................2-13
 Resource-Constrained Project Scheduling
 Problem with Multiple Crashable Modes ...2-17
 Mode-Identity, Resource-Constrained Project Scheduling Problem.....................2-17
 Expediting Resources ..2-17
 Generalized Precedence ...2-19
Multi-Project Scheduling ...2-20
 Multi-Project Scheduling Problem ...2-20
 Resource-Constrained, Multi-Project Scheduling Problem..2-22
 Multi-Modal, Resource-Constrained, Multi-Project Scheduling Problem2-23

vi

 Page

 Generalized, Multi-Modal, Resource-Constrained
 Multi-Project Scheduling Problem ...2-24
Summary ..2-24

III. Methodology .. 3-1

Introduction.. 3-1
Mathematical Formulation.. 3-1
 Assumptions .. 3-5
 Notation... 3-5
 Numbering of Activity Modes .. 3-8
 Activity Start Time Windows ... 3-8
 Constraints..3-12
 Objective Function ..3-18
 Complete Model..3-19
Problem Size and Complexity ..3-21
Decomposition of the MRCMPSP-GPR/EXP ..3-24
Solution Methodologies ...3-28
 Problem Generation...3-28
 Single Project/Subproblem Solution...3-29
 Decomposition/Master Problem Solution ...3-30
Summary ..3-30

IV. Problem Generation.. 4-1

Overview.. 4-1
PAGER: Problem Generator... 4-4
 Step 1 – Specification File Input... 4-4
 Step 2 – Basic Data Generation .. 4-6
 Step 3 – Network Generation.. 4-8
 Step 4 – Resource Data Generation ...4-40
 Step 5 – Cost Data Generation ..4-42
 Step 6 – Problem Output ...4-44
PAGER Implementation ..4-44
Summary and Conclusions...4-47

V. Single Project Scheduling ... 5-1

Overview.. 5-1
Approaches from the Literature .. 5-2
 Implicit Enumeration by Branch-and-Bound ... 5-2
 Zero-One Programming.. 5-6
 Implicit Enumeration by Activity Sequence... 5-7
Basic Algorithm ... 5-7
 Assumptions .. 5-9
 Initialization Phase ..5-10

vii

 Search Phase...5-10
 Page

Bounding Rules ...5-19
 Bounding Rule ZDS (Zero-Duration Activity Start) ...5-20
 Feasibility Rule NRF (Nonrenewable Resource Feasibility)5-20
 Bounding Rule NEC (Nonrenewable Expediting Resource Cost)5-21
 Feasibility Rule EST (Early Start Time) ..5-21
 Feasibility Rule MD (Mode Duration) ...5-22
 Bounding Rule MC (Mode Cost) ...5-23
 Bounding Rule REC (Renewable Expediting Resource Cost)5-24
 Feasibility Rule MOD (Infeasible Modes)..5-25
Testing..5-25
 Test Problem Parameters Held Constant ..5-26
 Test Problem Parameters Which Are Varied ..5-27
 Computational Contribution of Bounding Rules ...5-28
 Comparison to Integer Programming ...5-32
 Solution Results vs. Key Parameters..5-34
 Solution Time ...5-45
 Time to Optimal Solution ..5-48
 Completion Time vs. k...5-52
Summary and Conclusions...5-55

VI. Program Decomposition Algorithm... 6-1

Overview.. 6-1
Decomposition Approaches in the Literature ... 6-2
Sweeney-Murphy Decomposition.. 6-4
 Problem Decomposition.. 6-4
 Solving the Subproblems...6-10
 Solving the Master Problem...6-11
 Assumptions ...6-13
 Notation..6-13
 Decomposition Algorithm..6-15
 Correction to Sweeney-Murphy Approach ...6-22
 Choice of k..6-26
 Choice of Multipliers...6-29
Acceleration Schemes..6-35
 Subproblem Solution Bounding ...6-36
 Series Approach..6-36
 Incremental Enumeration...6-38
Test Problem Design ...6-38
 Program Designs...6-38
 Project Level Difficulty ...6-40
 Program Level Difficulty...6-41
 Problem Generation...6-43
Testing Results..6-43
 Methods of Determining Multipliers ..6-43
 Acceleration Schemes..6-45

viii

 Choice of k..6-47
 Comparison to Single-Project Scheduler ..6-49

 Page

 Non-Convergence..6-50
Summary and Conclusions...6-51

VII. Contributions and Recommendations .. 7-1

Contributions ... 7-1
Recommendations... 7-5
Summary ... 7-6

Appendix A. Notation ...A-1

 Overview..A-1
 Problem Types ...A-1
 Abbreviations and Acronyms..A-1
 Mathematical Notation ...A-2

 Notation...A-3

Appendix B. Sample PAGER Input...B-1

 Problem Generator Input ..B-1

Appendix C. Sample PAGER Output..C-1

 Problem File...C-1

Appendix D. Sample Scheduler Output ...D-1

Appendix E. Sample Decomposition Algorithm Output.. E-1

Appendix F. Best Solutions to (MP) Versus (P)... F-1

 Overview.. F-1
 Problem Generation Input... F-1
 Problem File... F-3
 Key Solutions (1, 2, 99, 100, 1000) .. F-5

Bibliography.. BIB-1

Vita .. VITA-1

ix

List of Figures

Figure Page

2-1. Problem Hierarchy ... 2-2
3-1. Activity-on-Node Representation of Example Problem 1 ... 3-2
3-2. Example Problem 2 .. 3-3
3-3. Example Activity Start Time .. 3-9
3-4. Block-Angular Structure..3-27
4-1. Overall Flow of PAGER... 4-5
4-2. Standard and Generalized Precedence Arcs ... 4-9
4-3. Project Lags ..4-13
4-4. CNC versus RT...4-18
4-5. Generation of a Project Network..4-26
4-6. Generating a Project Network ..4-27
4-7. Generating a Parallel Project Network ...4-28
4-8. Example of Multi-Project Program ..4-29
4-9. Initializing 0R with Ones..4-30

4-10. Initializing 0R with Mixed Project Nodes ...4-30
4-11. Precedence-Feasible Early Start Times of Zero-Duration Activities4-39
4-12. Distribution of Generation Times (5 to 50 Activities) ...4-45
4-13. Distribution of Generation Times (5 to 42 Activities...4-46
4-14. Distribution of Generation Times by Number of Job ..4-46
5-1. Rule vs. Average Solution Time (seconds) for 5 Activities..5-29
5-2. Rule vs. Problems Solved to Optimality (Within 300 sec.) for 10 Activities5-30
5-3. Rule vs. Problems Solved to Optimality (Within 300 sec.)
 for 10 Activities and Varying Modes..5-31
5-4. Rule vs. Problems Solved to Optimality (Within 300 sec.)
 for 10 Activities and Varying RT...5-32
5-5. Scheduler vs. OSL Improvement by Restrictiveness for 10 Activities..............................5-34
5-6. Solution Results as Occurrences ..5-36
5-7. Solution Results as Percentages ...5-36
5-8. Infeasible Problems vs. Resource Strength ...5-37
5-9. Infeasible Problems vs. RS and Mode ..5-38
5-10. Infeasibilities vs. RS and Percent of Activities with GPR..5-39
5-11. Solution Time Exceeding 20 Seconds vs. Restrictiveness (Occurrences)5-40
5-12. Solution Time Exceeding 20 Seconds vs. Restrictiveness (Percentages)5-40
5-13. Solution Time Exceeding 20 Seconds vs. RS..5-41
5-14. Problems Solved by 2-Level Factors ..5-42
5-15. Problems Solved Versus Restrictiveness...5-43
5-16. Problems Solved Versus Resource Strength ...5-44
5-17. Cumulative Problems Solved by Time Bin and Jobs ...5-46
5-18. Cumulative Problems Solved by Time Bin and RT...5-47
5-19. Cumulative Problems Solved by Time Bin and RS ...5-47
5-20. Average Time to Optimal Versus Completion Time Bin ...5-49
5-21. Optimal Time Bin Versus Completion Time Bin ..5-49
5-22. Problems Solved Versus Completion Time Bin...5-50

x

5-23. Problems Solved Versus Completion Time Bin by RT..5-50
Figure Page

5-24. Problems Solved Versus Completion Time Bin by RS ..5-51
5-25. Problem Solution Results for k=1, 10, 100, 1000 ...5-53
5-26. Solution Time Statistics for k=1, 10, 100, 1000 ...5-53
5-27. Average Completion Time vs. k ...5-54
5-28. Average Time Per Solution..5-55
5-29. Overall Average Solution Times Versus k ..5-55
6-1. Block-Angular Structure... 6-5
6-2. Sweeney-Murphy Subproblem.. 6-6
6-3. Sweeney-Murphy Master Problem .. 6-7
6-4. Revised Sweeney-Murphy Master Problem ..6-12
6-5. Sweeney-Murphy Optimality Theorem Counterexample Diagram...................................6-24
6-6. Sweeney-Murphy Optimality Theorem Counterexample Chart6-25
6-7. Average Time Per Solution..6-28
6-8. Overall Average Solution Times Versus k ..6-28
6-9. Lagrangian Dual of Original Problem (P)...6-29
6-10. Program Designs ...6-40
6-11. Solution Results vs. Multiplier Type / Scheduler ..6-44
6-12. Solution Results vs. Program Design ...6-45
6-13. Solution Results vs. k ..6-47
6-14. Iterations Required vs. k ..6-48
6-15. Log Distribution of Solution Times vs. k..6-50
7-1. Problem Hierarchy ... 7-2

xi

List of Tables

Table Page

2-1. Key Features of Project Scheduling Problems ... 2-3
3-1. Example Problem 2 .. 3-3
3-2. Activity Data for Example Problem ...3-22
3-3. Number of Variables ...3-23
3-4. Number of Constraints ..3-24
4-1. Input Parameters for Basic Data ... 4-6
4-2. Basic Data Variables.. 4-7
4-3. Input Parameters for Project Network Generation ..4-25
4-4. Input Parameters for Inter-Project Network Generation ..4-31
4-5. Input Parameters for Resource Data Generation...4-41
4-6. Input Parameters for Cost Data Generation..4-44
4-7. Key Features of Problem Generators..4-48
5-1. Problem Generation Parameters Held Constant ..5-27
5-2. Parameters Which Are Varied..5-28
5-3. Reduced Test Design...5-28
5-4. Rule vs. Average Solution Time (seconds) for 5 Activities..5-29
5-5. Rule vs. Problems Solved to Optimality (Within 300 sec.) for 10 Activities5-30
5-6. Rule vs. Problems Solved to Optimality (Within 300 sec.)
 for 10 Activities and Varying Modes..5-31
5-7. Rule vs. Problems Solved to Optimality (Within 300 sec.)
 for 10 Activities and Varying RT...5-31
5-8. Scheduler vs. OSL Solution Time (seconds) for 5 Activities ...5-33
5-9. Scheduler vs. OSL Solution Time (seconds) for 10 Activities ...5-33
5-10. Scheduler vs. OSL Improvement by Restrictiveness for 10 Activities..............................5-33
5-11. Full Test Design..5-34
5-12. Minimal Test Design ...5-35
5-13. Solution Results ..5-35
5-14. Infeasible Problems ...5-37
5-15. Infeasibilities by RS and Mode ..5-38
5-16. Infeasibilities by RS and Percent of Activities with Generalized Precedence (GPR).........5-38
5-17. Solution Time for 10- and 50-Activity Projects ..5-48
5-18. Time to Optimal (10-Activity Projects) ..5-52
5-19. Problem Solution Results for k=1, 10, 100, 1000 ...5-52
6-1. Sweeney-Murphy Optimality Theorem Counterexample Data...6-24
6-2. Project-Level Generation Parameters Which Vary..6-41
6-3. Project Level Generation Parameters Held Constant ...6-41
6-4. Program-Level Generation Parameters Which Vary ...6-42
6-5. Problem Design...6-42
6-6. Solution Time vs. Multiplier Type / Scheduler ...6-44
6-7. Solution Time vs. Problem Difficulty...6-46
6-8. Value of Acceleration Schemes..6-47
6-9. Solution Times vs. k ..6-48
6-10. Solution Time vs. k..6-49
7-1. Summary of Key Contributions .. 7-4

xii

AFIT/DS/ENS/01-02

Abstract

The field of project scheduling has received a great deal of study for many years with a steady

evolution of problem complexity and solution methodologies. As solution methodologies and

technologies improve, increasingly complex, real-world problems are addressed, presenting

researchers a continuing challenge to find ever more effective means for approaching project

scheduling. This dissertation introduces a project scheduling problem which is applicable across a

broad spectrum of real-world situations. The problem is based on the well-known Resource-

Constrained Project Scheduling Problem, extended in this dissertation to include generalized

precedence with minimal and maximal time lags and expediting resources. The problem is further

extended to include multiple projects which have generalized precedence, renewable and

nonrenewable resources, and expediting resources at the program level.

The problem presented in this dissertation is one not previously addressed in the literature nor

is it one to which the existing specialized project scheduling methodologies can be directly applied.

This dissertation presents a decomposition approach for solving the problem, including algorithms

for solving the resulting decomposed subproblems and the master problem. This dissertation also

describes a methodology for generating instances of the new problem, extending the way existing

problem generators describe and construct network structures and this class of problem. The

applicability of the methodologies presented is demonstrated through extensive empirical testing.

 1-1

A DECOMPOSITION APPROACH FOR THE MULTI-MODAL, RESOURCE-

CONSTRAINED, MULTI-PROJECT SCHEDULING PROBLEM WITH GENERALIZED

PRECEDENCE AND EXPEDITING RESOURCES

I. Introduction

Overview

The field of project scheduling has received a great deal of study for many years with a steady

evolution of problem complexity and solution methodologies. As solution methodologies and

technologies improve, increasingly complex, real-world problems are addressed, presenting

researchers a continuing challenge to find ever more effective means for approaching project

scheduling. This dissertation addresses a project scheduling problem which is applicable across a

broad spectrum of real-world situations. The total problem is one not previously addressed in the

literature nor is it one to which the existing specialized project scheduling methodologies can be

directly applied. This dissertation presents a decomposition approach for solving the problem,

including algorithms for solving the resulting decomposed subproblems and the master problem.

This dissertation also describes a methodology for generating instances of the new problem,

extending the way existing problem generators describe and construct network structures and this

class of problem.

Background

The scheduling problem introduced by this dissertation is the Multi-Modal, Resource-

Constrained, Multi-Project Scheduling Problem with Generalized Precedence and Expediting

Resources (MRCMPSP-GPR/EXP). In most general terms, the goal of the MRCMPSP-

GPR/EXP is to identify a start time for each activity in a set of related activities in order to

accomplish some objective, where various classes of resources exist and their quantity can be

varied. The way in which activities are related and the objective to be accomplished are what

differentiate the MRCMPSP-GPR/EXP from other scheduling problems in the literature.

A set of related activities is referred to as a project. Projects can take on many forms, ranging

from conducting cancer research or building a highway to running a political campaign or

conducting a military operation. A project may be as complex as designing and building a stealth

 1-2

aircraft or as simple as planning a company picnic. Whatever the nature of the project, its

component activities are related in two ways. First, activities may be precedence related. If one

activity cannot start until another activity has finished, the two activities are said to have a

standard precedence relationship. If, on the other hand, the start times of two activities are

related, the activities are said to have a generalized precedence relationship. More specifically, if

Activity B cannot start until some time after the start of Activity A, then Activity A is a

generalized predecessor of Activity B with a minimal time lag. If Activity B must start before

some time after the start of Activity A, then Activity A is a generalized predecessor of Activity B

with a maximal time lag.

As an example of precedence relationships, consider a few of the activities required to

successfully launch two fighter aircraft. Each fighter must be fueled and each must be loaded with

bombs. Typically, fueling the aircraft must be completed before the bomb loaders can begin their

activity (fuel and bombs do not mix well). Therefore, fueling and bomb loading have a standard

precedence relationship where fueling precedes loading. When it comes time for the fighters to

take off, they can use the same runway, taking off one after the other, or they can use different

runways and take off at the same time. The key consideration, though, may not be that one takes

off before the other, but that both take off at relatively close times so that they can rendezvous in

the air and continue the mission without one having to wait a long time for the other. In this case,

their takeoff times exhibit a generalized precedence relationship. If either Fighter A or Fighter B

can take off first, but both must take off within a two-minute interval of each other, then one might

say that Fighter A is a generalized predecessor of Fighter B with a minimal time lag of –2 minutes

and a maximal time lag of +2 minutes. In this way, Fighter B could actually take off before

Fighter A, but in any case, they will both take off within the desired two-minute time interval.

The second way activities can be related is by having a requirement for common resources.

Both fighter aircraft require JP-4 fuel and a crew to do the fueling. If the total amount of fuel

available during an air campaign is fixed, then fuel is a nonrenewable resource; the fuel is gone

once used. Fueling crews, by contrast, are renewable resources, since they can be used repeatedly,

but their availability at any given time is limited; there may be only two fueling crews on base.

Other resources are doubly-constrained, being both renewable and nonrenewable. Bombs would be

doubly-constrained if their total availability during the air campaign were limited (making them

nonrenewable) and if the number of bombs available at any given time were limited (making them

 1-3

renewable). This would be the case if a base could store only up to a specific number of bombs in

its bomb dump. Bomb loaders could not load more bombs at any given time than there are bombs

currently in the bomb dump, but the bomb dump can be restocked up until the time that the total

number of bombs available for the campaign are exhausted.

Finding a start time for each activity in a project such that the precedence relationships are

maintained and total usage of resources is within the limits of their availability is the act of

scheduling. To further complicate the scheduling process is the potential for multiple activity

execution modes. Activity execution modes are alternate ways to accomplish an activity and define

the duration and resource requirements of the activity. Suppose that the bomb dump in the above

example needed to be replenished. There are a number of ways this could be done. The bombs

could be loaded on two C-5 aircraft and flown straight to the base. This might take a single day.

The bombs could also be loaded on a supply ship, ferried to the nearest port, and then loaded on

flatbed trucks for the rest of the journey to the base. This might take two weeks. Either option for

restocking the bomb dump is a legitimate execution mode, and which mode is chosen depends on

how much time and how many C-5, ships, and flatbed trucks are available.

The choice of which mode is used to restock the bomb dump will likely affect other activities

which depend on having bombs in the dump. The choice of mode for restocking is, at the same

time, affected by other activities and their execution modes. Suppose the fighters will carry either

four 2000-pound bombs or eight 500-pound bombs (two possible modes for striking targets). If

the bomb dump is out of 2000-pound bombs and the ship-flatbed mode is used to replenish them,

either fighters will have to use 500-pound bombs for two weeks or strike missions will have to be

delayed. Consequently, the C-5 mode might be preferred. Unfortunately, if C-5 aircraft are used

for other activities and are unavailable during this time, the ship-flatbed mode may be the only

mode possible. (This dependency of activities on other activities is, in fact, a key motivator for

careful a priori scheduling.)

The careful selection of an execution mode for each activity is an important part of resolving

resource conflicts and is an integral part of scheduling in the presence of multiple modes. Which

modes are selected will determine how long it takes to complete a project and will determine which

resources are critical and which are not. Resource limitations may force a scheduler to choose

non-preferred modes or to delay activities. In many situations, fortunately, resource limitations

may be eased through expediting resources. The concept of expediting resources is simply to

 1-4

increase the availability of a critical resource to provide hopefully better scheduling options. If

additional C-5 aircraft could be obtained, then the bomb dump might be replenished sooner and

better weaponeering modes made possible for strike missions. In this situation, obtaining those C-

5s seems a logical decision. However, there is a tradeoff. While regularly available resources are

assumed to be available at no cost (they are company-owned, so to speak), expediting resources

are available only at a cost. Expediting resources might be purchased, rented, or leased. To a

construction company, they might be temporary workers. For the C-5s, they might be aircraft that

need to be refurbished, they might be borrowed from another theater (in this case, the cost may not

be dollars but opportunity cost to the lending theater), or they may be civilian aircraft with similar

carriage capacity leased from a commercial air freight company.

While modes and expediting resources both give schedulers greater flexibility, they are

fundamentally different. Modes typically trade greater resource requirements for shorter durations,

while expediting resources affect the availability of resources (i.e., demand vs. supply). Thus,

modes enable shorter activity durations, while expediting resources enable a more compact

schedule. In other words, a scheduler can always select the modes which give the shortest activity

durations possible. This selection, however, may be resource-feasible only if some of the activities

are delayed. Expediting resources raise the limits on resource availability and can reduce the

number of activities that need to be delayed (hence, a more compact schedule).

To this point, the fundamentals of precedence relationships, resources, and activity execution

modes have been explained. These are the characteristics of the MRCMPSP-GPR/EXP that

constrain which choices of execution modes, start times, and expediting resource use form feasible

schedules. Which of these feasible schedules is best, though, depends on the objective of the

scheduler. For the MRCMPSP-GPR/EXP, a variety of objectives are available.

The most general objective of the MRCMPSP-GPR/EXP is to minimize the schedule cost.

Costs come in three forms. As previously mentioned, using expediting resources incurs a cost.

The mode and start time selected for an activity may also incur a cost. In a construction activity,

the decision to hire skilled labor or unskilled labor is a mode choice which impacts the labor cost

associated with the activity. The activity may also require a cash outlay which increases over time

so that a delay in the start of the activity results in an increase in the cash outlay. The third type of

cost is the project completion cost. Many projects are either rewarded for finishing earlier than

 1-5

planned or penalized for finishing later. The bonus / penalty is a direct cost to the project (note

that a bonus is just a negative cost).

Other scheduling objectives are special cases of the cost minimization objective. Some of these

are described in Chapter III.

The final characteristic of the MRCMPSP-GPR/EXP is its multi-project nature. The

importance of identifying a problem as representing a single project or as having multiple projects

is in the decomposability of the problem. In essence, a single-project problem and a multi-project

problem are fundamentally the same except that the multi-project problem has distinct sets of

activities in which the activities are in some way more strongly related. A set of activities, for

example, may use some types of resources not used by any other set. Additionally, the activities in

a set may have many precedence relationships with other activities in the set, but very few with

activities in other sets. When a problem can be subdivided into such distinct sets, the sets are

tagged as projects and the set of projects is called a multi-project program. By their nature, the

multi-project program demonstrates a block-angular structure and can be decomposed using

procedures such as that proposed by Sweeney and Murphy (1979). The Sweeney-Murphy

approach is used in this dissertation to facilitate the solution of decomposable problems.

Though the MRCMPSP-GPR/EXP has not been addressed in the open literature, the literature

is full of methodologies for solving related project scheduling problems. Generally, attempts to

solve project scheduling problems with more traditional techniques, such as general integer

programming (IP) approaches, have been unsuccessful (Demeulemeester and Herroelen, 1992:

1803). Researchers have, therefore, turned towards the development of specialized algorithms for

solving project scheduling problems. This dissertation develops such an approach for the

MRCMPSP-GPR/EXP, including algorithms for solving single- and multiple-project instances.

There has also been an effort in the literature to develop problem generators to provide

consistent test cases for the multitude of solution methodologies. Unfortunately, most use

measures of network complexity which provides inconsistent and confusing results (see Chapter

IV). By contrast, there is a measure of network complexity which is recognized to be far superior,

but only one generator attempts to use this measure. Even then, this generator constructs networks

using the obsolete measure and then calculates the corresponding value of the superior measure. If

the network has the desired value, it is kept; otherwise, it is discarded and another network is

constructed and tested.

 1-6

This dissertation develops a methodology which constructs networks using the superior

measure directly. The network methodology is then built upon to develop a problem generator

which is capable of generating all of the characteristics of the MRCMPSP-GPR/EXP. No other

generator is currently known to provide standard and generalized precedence, expediting resources,

and multiple projects.

Significant progress has been made since the 1950s in the field of project scheduling. Even so,

major gaps still exist. As computational efficiency and power increase, new problems can be

proposed to consider these gaps. This dissertation considers such a problem area when considering

multi-modal problems with expediting resources.

Research Issues

The problem of scheduling multi-project programs with multiple modes, generalized

precedence, and expediting resources has not been addressed in the project scheduling literature.

No specialized solution methodologies have been developed to solve the problem and standard

integer programming approaches are currently inadequate for solving problems of this type in an

operationally reasonable amount of time. In addition, no existing problem generator is capable of

constructing problems with the characteristics of the MRCMPSP-GPR/EXP. Furthermore, the

problem generators that are presented in the literature generally use measures of network

complexity that poorly reflect the true nature of project networks.

Research Objectives

The research presented in this dissertation fills a number of voids in the expanding field of

project scheduling. Specifically, the research accomplishes the following objectives:

1. It introduces the MRCMPSP-GPR/EXP to the project scheduling literature, including a

mathematical formulation of the problem. The problem includes:

(a) Multiple activity execution modes.

(b) Renewable, nonrenewable, and doubly-constrained resources.

(c) Standard and generalized precedence between activities. Generalized precedence

includes both minimal and maximal time lags.

(d) Expediting resource availability which can be used by any activity requiring that

resource.

 1-7

(e) An objective to minimize project / program costs, including mode costs, project /

program completion costs, and expediting resource costs.

(f) Multiple projects exhibiting characteristics (a) – (e) at both the project level and

program level.

2. It presents a problem generator capable of constructing instances of the MRCMPSP-

GPR/EXP.

(a) The generator produces problem instances with all of the characteristics of the

MRCMPSP-GPR/EXP.

(b) The generator constructs project networks in a way which directly exploits a measure

of network complexity which reflects the nature of networks more accurately than the

measures more commonly used.

3. It develops a specialized algorithm for solving single-project instances of the MRCMPSP-

GPR/EXP.

(a) The algorithm is based on an approach for resource-constrained project scheduling

from the literature, extended for multiple modes, generalized precedence with minimal

and maximal time lags, expediting resource availability, a nd a cost-minimizing

objective function.

(b) The algorithm is designed to generate a set of k-best solutions to the problem rather

than a single optimal solution.

4. It uses the Sweeney-Murphy Decomposition principle to decompose multi-project

instances of the MRCMPSP-GPR/EXP for more efficient scheduling.

(a) Alternate methods for finding multipliers used to relax the coupling constraints in the

original problem are developed.

(b) Once the original problem is decomposed into subproblems, the specialized algorithm

developed for single-project instances of the MRCMPSP-GPR/EXP is used to solve

the subproblems.

(c) An algorithm for solving the master problem is developed.

(d) Techniques for both speeding solution of the master problem and for accelerating the

iterative solution process are developed.

(e) An error in the approach as originally presented by Sweeney and Murphy (1979) is

explained and the impact of that error is described.

 1-8

5. The problem generator designed in Objective 2 is used to generate test instances which are

solved to test the methodologies developed in Objectives 3 and 4.

Approach

The project scheduling literature has been reviewed to identify project scheduling problems,

and their mathematical formulations, which have characteristics in common with the MRCMPSP-

GPR/EXP. A number of such problems have been found. Where possible, formulations of

relevant objective functions and constraints have been borrowed from the literature and modified,

as necessary, to reflect characteristics unique to the MRCMPSP-GPR/EXP (e.g., extending

constraints for multiple projects and expediting resources). A complete mathematical formulation

of the MRCMPSP-GPR/EXP is presented in Chapter III.

Chapter III also introduces a decomposition of the problem, using classical Lagrangian

relaxation. Specifically, the multi-project nature of the MRCMPSP-GPR/EXP demonstrates a

block-angular structure which can be exploited to decompose the problem into a number of semi-

independent subproblems and a master problem. The subproblems represent the component

projects, each with its own set of precedence and resource constraints. The master problem

enforces the program-level precedence and resource constraints. Sweeney and Murphy (1979)

present an approach for solving the decomposed problem by, first, generating a set of k-best

solutions to each subproblem. The subproblem solutions are then combined to form a master

problem (a restriction of the original problem) which is solved to find a combination of subproblem

solutions (one solution from each subproblem) which is feasible to the program-level constraints

and which is optimal among all such combinations. Sweeney and Murphy provide a condition

under which the optimal solution to the master problem is also optimal to the original problem.

The subproblems are solved using a specialized algorithm developed in Chapter V. The

algorithm is an implicit enumeration scheme based on the algorithm by Talbot (1982). The

algorithm has been extended to incorporate the characteristics of the MRCMPSP-GPR/EXP. The

algorithm has also been modified to generate a set of k-best solutions, rather than a single optimal.

The resulting algorithm is further extended with a set of bounding and feasibility rules designed to

speed the solution process. Though designed specifically to solve the subproblems of a

decomposed multi-project problem, the specialized algorithm of Chapter V is equally applicable as

a stand-alone scheduler for single-project instances. Extensive testing of the algorithm is reported,

 1-9

including a comparison of results to those obtained by solving the test problems using a standard

commercial IP solver.

Chapter VI presents a procedure for relaxing / decomposing a multi-project problem and then

for iteratively solving the subproblems and the master problem. The basic procedure is based on

the approach proposed by Sweeney and Murphy (1979). Sweeney and Murphy, however, do not

prescribe a methodology for solving either the subproblems or the master problem. In their paper,

they use a standard IP approach for solving both the subproblems and the master problem. The

procedure proposed in Chapter VI uses the algorithm developed in Chapter V for solving the

subproblems. Chapter VI, then, develops an implicit enumeration algorithm for solving the master

problem.

Chapter VI also proposes alternative approaches for generating the multipliers used to relax

the original problem. These approaches are based on (1) an approach by Nauss (1979) for

estimating the marginal benefit of resources in an IP and (2) the concept of Average Utilization

Factor described by Kurtulus and Davis (1982) and Kurtulus and Narula (1985). Finally, Chapter

VI provides additional schemes for accelerating solution of the master problem. Testing of the

decomposition approach, using alternative multipliers and acceleration schemes, is reported.

Results are compared to solving the problems in whole (using the algorithm of Chapter V) versus

through decomposition.

Summary

This chapter introduced the subject scheduling problem, provided an overview of the research

issues and objectives, and summarized the research approach. Chapter II presents a review of the

pertinent literature on project scheduling and problem decomposition. Chapter III provides a

mathematical formulation of the scheduling problem and shows how the problem may be

decomposed. Chapter IV details a generator for constructing test problems, including an algorithm

for generating network structures using an improved measure of network complexity. Chapters V

and VI, respectively, develop algorithms for solving single-project and multi-project instances of

the problem. Finally, a summary of the research, its contributions, and suggestions for future

research are outlined in Chapter VII.

 2-1

II. Literature Review

Introduction

The literature is replete with models representing a wide variety of project scheduling

problems. This chapter reviews the models which provide a foundation for the Multi-Modal,

Resource-Constrained, Multi-Project Scheduling Problem with Generalized Precedence and

Expediting Resources (MRCMPSP-GPR/EXP). The chapter also describes the myriad of

approaches developed to solve project scheduling problems, including the use of problem

decomposition methods. The approaches are further evaluated in Chapters V and VI for their

applicability to the MRCMPSP-GPR/EXP.

Mathematical formulations are provided for the more important problems discussed in this

chapter. Note that the equations used in each of the model formulations are sequentially numbered.

Once an equation has been numbered, any reuse of the equation will bear the original number.

This consistency in numbering will provide insight into how one model builds upon another. Note

also that the abbreviations used to denote the different scheduling problems are summarized in

Appendix A for easy reference. However, the notation used in the problem formulations may not,

in all cases, be consistent with the notation included in Appendix A. The formulations below retain

the variable definitions given by the original authors and may, therefore, change from one

formulation to another. Consequently, each variable used in a formulation is defined for that

formulation only. In those cases that a variable in this chapter is inconsistent with the variables

listed in Appendix A, the inconsistent variable is not used in subsequent chapters.

Problem Hierarchy

The next section provides a review of project scheduling problems from the literature, most of

which are special cases of the MRCMPSP-GPR/EXP. To set the stage for this review, Figure 2-1

diagrams the hierarchical relationship of the more important problems and the MRCMPSP-

GPR/EXP. Each problem is numbered so it can be easily referred to in the subsequent sections.

Note that Problem 1, at the bottom of the diagram, is the resource-unconstrained Project

Scheduling Problem. At the top of the diagram, Problem 12, is the MRCMPSP-GPR/EXP.

Intermediate problems are constructed by adding characteristics to problems at a lower level or by

relaxing characteristics of problems at a higher level.

 2-2

Project Scheduling Problem

Resource-Constrained
Project Scheduling Problem

Multi-Modal,
Resource-Constrained

Project Scheduling Problem

Resource-Constrained
Multi-Project,

Scheduling Problem

Generalized,
Resource-Constrained

Project Scheduling Problem

Constrained
Resources

Multiple
Projects

Multiple
Modes

Minimal
Lags

Generalized,
Multi-Modal,

Resource-Constrained
Project Scheduling Problem

Multi-Modal,
Resource-Constrained

Project Scheduling Problem
w/ Generalized Precedence

Maximal
Lags

Multi-Modal,
Resource-Constrained

Multi-Project
Scheduling Problem

Generalized,
Multi-Modal,

Resource-Constrained
Multi-Project

Scheduling Problem

Multi-Modal,
Resource-Constrained

Multi-Project
Scheduling Problem

w/ Generalized Precedence
& Expediting Resources

Multi-Modal,
Resource-Constrained

 Project Scheduling Problem
w/Expediting Resources

Resource Critical
Project Crashing Problem

Additional
Resources

1

2

3 4

12

5 6

7 8

9 10 11

Figure 2-1. Problem Hierarchy

Table 2-1 is also provided as a tabular summary of the most important characteristics of the

problems included in Figure 2-1.

 2-3

Table 2-1. Key Features of Project Scheduling Problems

1.
 P

SP

2.
 R

C
PS

P

3.
 G

R
C

PS
P

4.
 M

R
C

PS
P

5.
 R

C
M

PS
P

6.
 R

C
PC

P

7.
 G

M
R

C
PS

P

8.
 M

R
C

M
PS

P

9.
 M

R
C

PS
P-

G
PR

10
.

G
M

R
C

M
PS

P

11
.

M
R

C
PS

P-
EX

P

12
.

M
R

C
M

PS
P

-G
PR

/E
X

P

Standard Precedence x x x x x x x x x x x x
Generalized Prec (Min Lags) x x x x x
Generalized Prec (Max Lags) x x

Multiple Modes x x x x x x x

Expediting Resources x x x

Multi-Project Problems x x
 w/Program Nonrenew Res x x
 w/Program Renew Res x
 w/Time-Related Projects x

Regular Measure of Perf x x x x x x x x x x x x
Non-Regular Measure of Perf x x x

Single-Project Scheduling

This section reviews single-project scheduling problems and the approaches used to solve

them. The section begins with the resource-unconstrained Project Scheduling Problem as the basis

for the subsequent problems. Resource constraints, activity crashing, expediting resources, and

generalized precedence are then discussed and related problems are introduced.

The Project Scheduling Problem. The Project Scheduling Problem (PSP), Problem 1 in Figure

2-1, dates to the late 1950s (see Kelley, 1961) when the Critical Path Method (CPM) was

developed (Icmeli, 1993). The PSP is the problem of scheduling a set of activities in a project to

minimize the makespan of the project. Activities have fixed and known durations. Any given pair

of activities (graphically represented by nodes in the project network) may be related by simple

 2-4

finish-start precedence relationships (represented by network arcs) where one activity must finish

before another may start. The mathematical formulation of the problem is given by:

 Minimize Js (1)

 subject to iij dss ?? , jOi ?? (2)

 integer and 0?js , j? (3)

where

 sj = start time of activity j

 dj = duration of activity j

 J = terminal node or activity

 Oj = set of predecessors of activity j

The PSP may be solved using the CPM. The CPM allows the activities of a project to be

scheduled in a way which maintains the precedence relationships between the activities and which

minimizes the duration of the project. This is done by starting each activity as soon as all of its

predecessors are complete (see Shtub et al., 1994: 338-341). These start times are specifically

referred to as the early start times of the activities. The completion time of the last activity

completed is the minimum completion time of the project.

A backwards recursion may also be made on the network where all activities are scheduled to

start as late as possible while still completing the project at its minimum completion time and

maintaining the precedence relationships. These are the late start times of the activities. Those

activities whose early and late start times are identical are called critical activities. Each network

path consisting only of critical activities is called a critical path (from which the name Critical

Path Method comes). Kelley (1961) provides the mathematical basis for the CPM.

While the applicability of the CPM is limited because it deals only with the time aspect of the

project without consideration for resource restrictions (see Icmeli, 1993), it remains a useful tool.

It is used in many enumeration schemes to provide activity start time bounds which reduce the

solution space which needs to be enumerated.

Resource Constraints. A significant limitation of the PSP is that resources are assumed to be

available at ample enough levels such that they do not constrain the schedule. In reality, project

resources are often limited to the point where the start times of some activities have to be delayed

 2-5

because insufficient resources are available. The consideration of limited resources has given rise

to a myriad of resource-constrained problems, the most basic of which is the Resource-Constrained

Project Scheduling Problem (RCPSP), Problem 2 in Figure 2-1.

The RCPSP has the same finish-start precedence structure and makespan minimization

objective function as the PSP. However, each activity now requires a certain amount of some

limited resources. The demand for a resource by an activity is assumed constant for the duration

of the activity and resource availability per period is constant. Generally, there are insufficient

resources in one or more periods to schedule all of the critical path activities at their earliest start

time. (Consequently, the CPM alone is insufficient for developing a feasible schedule.)

One of the earliest formulations of the RCPSP was proposed by Bowman (1959) for job shop

scheduling. In Bowman’s formulation, shown below, 0-1 variables describe whether or not an

activity is in progress in any given time period. Constraints (5) assure that each activity is in

progress during the same number of time periods as the activity has units of duration. Constraints

(6) prohibit activity preemption (i.e., an activity being interrupted once started). Constraints (7)

enforce precedence relationships by assuring that, if activity i precedes activity j, activity j can be

in process at time t* only if the number of periods that activity i is in process before time t* is

greater than or equal to the duration of activity i. Resource use is limited by Constraints (8).

Finally, the objective function is to minimize the project duration.

 Minimize ? ?
? ?

?
1

0

0

1

4
t

tt

J

j
jt

tt x (4)

 subject to j

dl

et
jt dx

jj

j

??
??

?

1

, j? (5)

 ? ? j

dl

tt
jttjjjtj dxxdxd

jj

??? ?
??

??
?

1

2
1

*

, ? ? jlet jj ??? , 2,* (6)

 ?
?

?
?

1

1

*

*

t

t
itjti xxd , * , , tjOi j?? (7)

 qt

J

j
jtjq Rxr ??

?1

, tq ,? (8)

 ? ?0,1?jtx , tj ,? (9)

where

 2-6

 jtx = 1 if activity j is in process at time t ; 0, otherwise

 J = terminal node or activity

 dj = duration of activity j

 ej = early start time of activity j

 lj = late start time of activity j

 t0 = early project completion time

 t1 = late project completion time

 rjq = requirement for resource q by activity j

 Rqt = availability of resource q in time t

 Oj = set of predecessors of activity j

Since, in Bowman’s formulation, an activity requires a variable for each time period from the

activity’s earliest possible start time to its latest possible finish time, this formulation generally

requires many more 0-1 variables than later formulations (described next). Bowman gives an

illustrative job shop example with three products and four machines. He shows that even this

small problem would require 300 to 600 variables, depending on the number of time frames

chosen, and even more constraints (Bowman, 1959: 624). The Bowman formulation, however, has

still found utility in later research efforts (e.g., Deckro and Hebert, 1989).

Pritsker et al. (1969) developed a 0-1 formulation of the RCPSP which provides considerable

economy over the Bowman formulation. Their formulation, the Pritsker-Watters-Wolfe (PWW)

model, is based on 0-1 variables which indicate the time periods in which an activity may be

completed. Since the set of possible completion times of an activity can be a small subset of all of

the times an activity may be in progress, typically far fewer variables are required.

In the PWW model, shown below, Constraints (11) assure that each activity completes only

once. Precedence relationships are enforced by Constraints (12) while resource limits are enforced

by Constraints (8). The objective shown is to minimize the project makespan.

 Minimize ?
?

T

t
Jttx

1

 (10)

 subject to 1??
?

j

j

l

et
jtx , j? (11)

 2-7

 i

l

et
jt

l

et
it dtxtx

j

j

i

i

?? ??
??

, jOi j , ?? (12)

 qt

J

j
jtjq Rxr ??

?1

, tq ,? (8)

 ? ?0,1?jtx , tj ,? (9)

where

 jtx = 1 if activity j completes at time t ; 0, otherwise

 J = terminal node or activity

 dj = duration of activity j

 ej = early start time of activity j

 lj = late start time of activity j

 T = late project completion time

 rjq = requirement for resource q by activity j

 Rqt = availability of resource q in time t

 Oj = set of predecessors of activity j

In an example, Pritsker et al. present a three-project, eight-activity (total), three-resource

problem. Their formulation requires 33 variables and 37 constraints (Pritsker et al., 1969: 107).

This is an improvement over the 72 variables and 125 constraints (50 variables and 94 constraints

with careful size reduction) required by the Bowman formulation of the problem (Pritsker et al.,

1969: 107). The PWW model has been used extensively by other authors and is the model upon

which the mathematical formulation in Chapter III for the MRCMPSP-GPR/EXP is based.

Blazewicz et al. (1983) show that the RCPSP is a generalization of the job shop scheduling

problem and, as such, belongs to the NP-complete complexity class. Consequently, the breadth of

approaches reported for solving the RCPSP has met with mixed success. The remainder of this

subsection discusses the breadth of solution approaches for the RCPSP.

Mathematical Programming. Pritsker et al. solve their example problem using a general

integer programming (IP) code developed by Geoffrion (Pritsker et al., 1969: 106). Other authors

have also used general IP approaches to solve the RCPSP (e.g., Bowman, 1959; Patterson and

Huber, 1974; Patterson and Roth, 1976; Deckro and Hebert, 1989; Icmeli and Rom, 1996). One

 2-8

of the characteristics of the RCPSP which has been exploited by some authors to improve the

efficiency of general IP approaches to the RCPSP is the existence of special ordered sets (SOS) of

variables.

Beale and Tomlin (1969) introduced the concept of SOS variables. A special ordered set of

variables of type 1 (SOS1) is a set of variables (continuous or integer) within which exactly one

variable must be non-zero. A special ordered set of variables of type 2 (SOS2) is a set of variables

within which at most two can be non-zero. In the case of SOS2 variables, the two non-zero

variables must be adjacent in the ordering given to the set (Williams, 1985: 173). Constraints (11)

are SOS1 variables since only one xjt will be non-zero for each activity j.

The restriction that a set of variables belongs to SOS1 or SOS2 is easily modeled using binary

variables and constraints, as in Constraints (11). The great computational advantage to be gained,

however, comes from treating these sets algorithmically (Williams, 1985: 173). Bean (1984)

points out that a general n-variable binary problem has an enumeration tree with 2n branches. If

the variables are separated into m SOS1 sets, where the ith set contains ni variables and

n ni
i

m

?
?
?

1
, then only ni

i

m

?
?

1
 of the 2n branches mentioned above are feasible in the multiple choice

constraints defined by this partitioning. Bean presents a branch-and-bound algorithm which

exploits SOS1 variables. The algorithm is successfully a pplied to a number of problems with up to

400 binary variables. Tripathy (1984) uses a branch -and-bound algorithm with SOS1 variables as

part of a solution methodology for the school timetabling problem. He solves a problem with 3384

variables.

Despite the general usefulness of SOS variables, Patterson (1984) reports that in his

comparison of exact approaches for solving the RCPSP, one approach that was considered for the

comparison was solving the problem using a general purpose 0-1 program solver using Tomlin’s

integrated SOS procedure. The approach was eliminated because it could solve only the smallest

of problem instances in the time imposed. Demeulemeester and Herroelen (1992: 1803) also report

that, while the RCPSP is typically formulated as a straightforward integer program, standard IP

approaches have generally proven unsuccessful. Researchers have thus turned to specialized

algorithms for finding exact, or optimal, solutions (Demeulemeester and Herroelen, 1992: 1803).

Graph-Based Approaches. Balas (1970) represents the RCPSP as a disjunctive graph

with the goal of eliminating the need to consider individual time periods over the project horizon.

 2-9

Solutions are obtained by finding a minimum-arc disjunctive graph subject to stability conditions.

Stability is represented by a generalized coefficient of internal stability – a check for feasibility

with respect to available resources. Gorenstein (1972) shows how the generalized coefficient of

internal stability can be calculated using a maximum -flow computation on a bipartite graph. While

the network representation of the problem eliminates the dependence of the number of variables on

the time horizon, Christofides et al. (1987) suggest that the procedure proposed for guaranteeing

the feasibility of the solution requires a large computational effort that limits the use of the

algorithm.

Davis and Heidorn (1971) present an algorithm where activities are broken into unit-length

tasks. An A-network is formed where nodes represent subsets of tasks and arcs connect subsets

which could be completed on adjacent days. The minimization of the project duration, then, is a

matter of finding a path from start to finish in the A-network which contains a minimal number of

arcs. The advantage of this procedure is that the subdivision of activities into tasks of unit length

easily allows for job splitting (without any additional computational effort) and activity resource

requirements can vary over the duration of the activity. The drawback to the procedure is that the

number of subsets grows rapidly with problem size and only very small problems can be handled

(Davis and Heidorn, 1971: B-815; Christofides et al., 1987: 263). Davis and Heidorn test their

algorithm on 65 problems, each containing 50 to 95 unit-duration tasks (30 original activities) and

involving 3 resource types. Optimal solutions were found for 48 of these problems (Davis and

Heidorn, 1971: B-815).

Implicit Enumeration. Most implicit enumeration methods use partial schedules which are

associated with the nodes of an enumeration tree. Branching from nodes equates to extending

partial schedules. Dominance rules and lower bounds serve to reduce the number of alternatives

for extending partial schedules. Methods differ in the way they branch and prune.

Talbot and Patterson (1978), rather than using a 0-1 formulation of the problem, represent the

problem in structured, compact integer arrays which are directly employed by the solution

procedure. This representation results in considerable memory savings. The solution procedure

uses implicit enumeration of all feasible schedules, relying on network cuts to fathom partial

schedules which cannot lead to an improved solution. Talbot and Patterson conduct a comparative

study of their algorithm using 50 test problems. They show their algorithm to be more efficient

than other enumeration procedures and competitive with the best available branch-and-bound

 2-10

procedure, while requiring considerably less computer storage. They claim, however, that the

likelihood of obtaining an optimal solution for projects containing more than 50 activities within a

reasonable amount of computation time is low. In fact, they encountered a few projects containing

as few as 35 activities that could not be solved in a reasonable amount of time with their approach

in 1978 (Talbot and Patterson, 1978: 1172).

Stinson et al. (1978) present a branch-and-bound procedure where nodes in the solution tree

correspond to precedence and resource feasible assignments for a subset of the activities of the

project. In a comparison of exact approaches for solving the RCPSP, Patterson (1984) determines

Stinson’s Procedure to be the fastest of the procedures tested at that time. Patterson’s 110 test

problems include up to 50 activities and 3 resource types.

Christofides et al. (1987) and Demeulemeester and Herroelen (1992) use the concept of delay

alternatives. Christofides et al. (1987) present a delay alternative branch-and-bound algorithm

based on the idea of using disjunctive arcs for resolving conflicts that are created whenever sets of

activities have to be scheduled whose total resource requirements exceed the resource availabilities

in some periods. For fathoming branches, the authors examine four lower bounds and

computational results appear promising. Demeulemeester et al. (1994), however, present a

counterexample to show that the procedure proposed by Christofides et al. does not guarantee an

optimal solution. Demeulemeester et al. suggest a modification to this procedure which does

guarantee optimality. Their modification expands the set of source nodes considered for delay arcs

to ensure that partial schedules which may lead to an optimal schedule are not fathomed

prematurely. Demeulemeester et al. test their modified approach using Patterson’s 110 test

problems and find that their approach optimally solves all of these test problems.

Demeulemeester and Herroelen (1992) present another delay alternative branch-and-bounding

procedure where the nodes represent partial schedules in which finish times have been temporarily

assigned to a subset of activities of the project. Activities are scheduled as soon as precedence and

resource constraints allow, but they may be delayed based on decisions made in later stages of the

search process. The algorithm shows promising results, being an average of almost 12 times faster

than the best-first procedure by Stinson et al. previously reported by Patterson (1984) to be the

most effective and efficient on the problem set considered. The algorithm is tested on projects with

at most 51 activities and 3 resources.

 2-11

Other Approaches. Patterson and Huber (1974) present a minimum bounding algorithm

and a maximum bounding algorithm to solve the 0-1 formulation of the problem. The minimum

bounding algorithm begins by fixing the project horizon at the CPM shortest possible project

duration and then solving the 0-1 problem to determine feasibility. If feasible, the schedule based

on the CPM duration is optimal. If infeasible, the project horizon is extended by one time unit and

the 0-1 problem solved again to determine feasibility. The algorithm continues until a feasible (and

consequently, optimal) schedule is found. The maximum bounding algorithm is similar except that

a feasible schedule is first determined using an appropriate heuristic. The project horizon is then

set at one time unit less than the project duration found with the heuristic and the 0-1 problem

solved for feasibility. If infeasible, the duration from the heuristic solution is optimal. If feasible,

the time horizon is again shortened and the process continued until there are no feasible schedules

for a given project horizon. An optimal schedule is the last feasible schedule. Patterson and Huber

demonstrate this approach to be more effective than 0-1 programming without bounding. On a set

of 11 test problems, they show that less time was involved in examining a series of 0-1 problems

for feasibility than was involved in solving one 0-1 problem optimally (Patterson and Huber, 1974:

997).

Zamani (under review) presents an algorithm which finds an optimal solution or a heuristic

solution within a certain range of the optimal solution. His algorithm uses heuristic estimates

which are continuously updated during the search process. At each level of the search tree, the

heuristic estimates of partial solutions are updated by comparing them with those of their

neighbors. The initial heuristic value of every partial schedule is a lower-bound on the completion

of the project. Zamani reports that solution times compare favorably to other optimal algorithms,

and the algorithm provides guaranteed performance bounds unlike other heuristics.

One variant of the RCPSP is the Resource Availability Cost Problem (RACP), proposed by

Demeulemeester (1995). The RACP is the problem of minimizing renewable resource availability

costs subject to a project due date. (Renewable resources are those which are limited on a per

period basis.) More precisely, the per period availability of a resource is to be the same for all

periods, but the objective of the problem is to determine what this resource level should be in order

to complete the project by a fixed due date at minimal cost for resources. Demeulemeester uses a

minimum bounding strategy to solve this problem. The strategy starts with minimal resource

availabilities and solves a resource-constrained project scheduling decision problem to determine if

 2-12

a feasible schedule exists at the current levels of resource. If so, the schedule is optimal. If not,

resource availabilities are incrementally increased and the decision problem solved until a feasible,

and optimal, schedule is found. The technique was successfully applied to a modification of

Patterson’s 110 test problems.

Activity Crashing. Activity crashing is the process of shortening the duration of an activity.

The following discussion outlines a number of scheduling problems which differ in the way they

crash an activity’s duration.

 2-13

Minimal Cost Project Network Problem. Wu and Li (1994) and Kamburowski (1995)

discuss the Minimal Cost Project Network Problem (MCPNP). The concept of the problem is to

crash a project network, without resource constraints, to minimize project costs. The direct costs

of crashing activities are offset by indirect costs based on the duration of the project. Wu and Li

(1994) outline a method for solving the problem using a minimum cut set algorithm. The key steps

of the algorithm identify normal project durations, minimum cut sets, and the capacities of those

cut sets. Kamburowski (1995), however, shows that the method of Wu and Li does not guarantee

an optimal solution. He outlines his own optimal method which is also based on a minimum cut set

and demonstrates the approach on an example with four activities.

Project Time/Cost Tradeoff Problem. The Project Time/Cost Tradeoff Problem (PTCTP)

allows a project to be shortened by crashing the duration of one or more if its activities. That is,

each activity has a normal duration and a crashed duration and, at a cost, the duration of an

activity can be reduced from its normal duration to as short as its minimum crashed duration. The

objective is to determine the start time and duration of each activity in order to complete the project

by a fixed due date while minimizing the cost of crashing. The methods demonstrated for solving

the problem include a minimum cut set algorithm (Phillips and Dessouky, 1977), a labeling

algorithm (Elmaghraby, 1977: 58-118; Ford and Fulkerson, 1962: 151-162), a CPM time-cost

tradeoff procedure (Moder et al., 1983: 237-251), and a Benders’ Decomposition (Kuyumcu and

Garcia-Diaz, 1994). While the crashing cost function is generally linear, Elmaghraby (1977)

extends the model to include strictly convex cost functions, concave cost-duration functions, and

discrete non-increasing functions.

Activity Duration Crashing Problem. The Activity Duration Crashing Problem, proposed

by Deckro and Hebert (1989), is a discrete extension of the Project Time/Cost Tradeoff Problem,

incorporating resource restrictions as well. The standard objective is to determine the start time and

duration of each activity which minimizes the project duration subject to a budget for crashing and

subject to resource availabilities. Deckro and Hebert base their model on Bowman’s (1959) 0-1

formulation of the Resource-Constrained Project Scheduling Problem. They provide a five-

activity, one-resource example which was solved using a commercial integer program solver (using

branch-and-bound).

 2-14

Multi-Modal, Resource-Constrained Project Scheduling Problem. The previous two

problems seek to shorten the duration of activities from a normal duration to a crashed duration,

typically at a per-period cost for crashing. The Multi-Modal, Resource-Constrained Project

Scheduling Problem (MRCPSP), Problem 4 in Figure 2-1, is similar in that it allows tradeoffs

between activity duration and cost. However, the cost incurred for changing the duration of an

activity is not necessarily a monetary fee charge for each period the activity duration is shortened.

Instead, the cost for changing the duration of an activity is incurring a different mix of required

resources. More precisely, each activity can be performed in one of multiple execution modes.

The mode of execution determines the activity’s duration and resource requirements. For example,

the U.S. Air Force’s Air Mobility Command (AMC) may have the task of airlifting troops and

supplies from the U.S. to a forward operating base (FOB) overseas. This task may have several

possible execution modes. One mode may involve airlifting the troops and supplies, via C-5

aircraft, from the U.S. to a main operating base (MOB) overseas and then to the FOB using C-130

aircraft. An alternative mode may involve airlifting the troops and supplies directly from the U.S.

to the FOB using C-17 aircraft. Obviously, the time and resources required to accomplish the task

depends on the execution mode chosen.

The standard objective of the problem is to minimize the duration of the project, subject to

resource constraints, by determining the start time and execution mode for each activity. The

problem belongs to the NP-Hard complexity class (Kolisch, 1995: 26).

Following is the mathematical formulation of the MRCPSP. The model is almost identical to

that of the RCPSP, the main difference being an additional index, m, is added to the decision

variable to indicate which mode is selected for an activity.

 Minimize ?
?

T

t
tJtx

1
1 (13)

 subject to 1
1

?? ?
? ?

j

j

jl

et

M

m
jmtx , j? (14)

 im

l

et

M

m
jmt

l

et

M

m
imt dtxtx

j

j

ji

i

i

?? ? ?? ?
? ?? ? 11

, jOi j , ?? (15)

 qt

J

j

M

m
jmtjq Rxr

j

?? ?
? ?1 1

, tq ,? (16)

 2-15

 ? ?0,1?jmtx , tmj , ,? (17)

where

 jmtx = 1 if activity j is executed in mode m and completes at time t ; 0, otherwise

 J = terminal node or activity

 djm = duration of activity j when executed in mode m

 ej = early start time of activity j

 lj = late start time of activity j

 T = late project completion time

 rjmq = requirement for resource q by activity j executed in mode m

 Rqt = availability of resource q in time t

 Oj = set of predecessors of activity j

To solve the MRCPSP, Talbot (1982) presents a two-stage solution methodology which builds

upon ideas presented earlier for the RCPSP (see Talbot and Patterson, 1978). In the first stage, the

network is relabeled using a heuristic scheduling rule. This labeling process defines the order in

which activities are considered for scheduling during the second stage of the procedure. The

precedence and resource constraints are also stored in memory as compact arrays that are

interrogated during enumeration to ensure solution feasibility. Stage 2 is an implicit enumeration

algorithm which builds always-feasible partial schedules into complete schedules by considering

jobs for assignment in increasing numerical order. When a complete schedule is built, if the

schedule is an improved solution, bounds are tightened and the assignment procedure begins again

with job 1. Ultimately, optimality is verified either by enumerating (explicitly or implicitly) all

possible schedules or by achieving some theoretical bound such as the critical path. Talbot

demonstrates the procedure on problems of up to 30 activities. Not all problems were solved in the

16-second time limit permitted (Talbot, 1982: 1209).

Patterson et al. (1989, 1990) refined Talbot’s solution approach by introducing a precedence

tree which allows a systematic enumeration of mode assignments and start times. At each level of

the tree, the activities which are eligible for scheduling (vis-à-vis the precedence and resource

constraints) are considered for addition to the partial schedule. In the case of minimizing the

project makespan, activities are scheduled at their earliest precedence and resource feasible time.

Patterson et al. also discuss the application of the precedence tree to the Resource-Constrained Net

 2-16

Present Value Problem (RCNPVP) which is the RCPSP where the minimization of cash flows is

the objective (see Icmeli and Erenguc, 1996; and Doersch and Patterson, 1977). Negative activity

cash flows in the objective function of the RCNPVP would drive the start time of those activities to

their late start time. Because of the increased computational times required to enumerate over all

possible start times of these activities, Patterson et al. suggest use of their algorithm as a heuristic,

where they allocate some fixed percent of the solution time to right-shifting the activities with

negative cash flows.

Sprecher (1994) improves the procedure by Patterson et al. for the RCPSP by introducing the

notion of an i-partial schedule which uniquely describes a node i of the enumeration tree and the

associated partial schedule. Sprecher also applies four dominance criteria and one feasibility

bounding rule. Sprecher performed a computational evaluation of his procedure on a set of test

problems and found that his procedure revealed an acceleration factor of approximately one

hundred in comparison to the original algorithm of Patterson et al. (1990).

Kolisch and Frase (1996) produce an additional acceleration of the procedure by Sprecher

(1994) by adding three bounding rules (to shorten the time windows of feasible activity start

times), two lower bounding rules, and one feasibility rule. They compare the modified procedure

with the basic enumeration scheme using 250 benchmark problems and find improvement on the

order of 1000 times. Sprecher and Drexl (1996a, 1996b) provide further refinements to the

procedure. They present a branch-and-bound algorithm with special bounding rules which has

substantially improved the computational tractability of the MRCPSP and which has nearly

doubled the size of projects that can be solved to optimality (Sprecher and Drexl, 1996b: 24).

Even so, in a test of 10 randomly generated problems, one problem with 16 activities, 5 modes per

activity, and 4 resource types required 3 hours 56 minutes to solve. Of greater concern, Sprecher

and Drexl report that the computation time seems to increase exponentially with the number of

activities and the number of modes per activity (Sprecher and Drexl, 1996b: 18).

Finally, Sprecher and Drexl (1998) improve the precedence tree approach further by

introducing search tree reduction schemes which exclude partial schedules from further

continuation. Search tree reduction is provided by a number of bounding rules, which, they report,

nearly doubles the tractability of the problem (i.e., the size of problems that can be solved)

(Sprecher and Drexl, 1998: 448).

 2-17

Sprecher et al. (1997) present another approach which builds upon the delay alternative

concept of Christofides et al. (1987) and Demeulemeester and Herroelen (1992) for the single-

mode case. Using the notion of mode alternatives, each level of the branch-and-bound tree is

associated with a fixed time (decision point) at which activities can be started. Decision points

occur when all activities currently in process finish. The set of eligible activities is based on the set

of activities that are finished at or before the decision point. All eligible activities are temporarily

scheduled at the decision point. An eligible activity (now scheduled to start at the decision point)

was either previously assigned a mode or has not been assigned a mode. The eligible activities not

previously assigned a mode are assigned a mode and that set of activities, with their newly assigned

modes, form a mode alternative. Scheduling all eligible activities to start at the decision point may

have caused some resource conflicts. Thus, the set of minimal delay alternatives is computed,

where a delay alternative is a subset of the activities started at the decision point whose

postponement makes the remaining scheduled activities renewable-resource feasible. A minimal

delay alternative is one where no proper subset of the delay alternative is itself a delay alternative.

A minimal delay alternative is selected and those activities making up the alternative are removed

from the partial schedule at the decision point. A new decision point is calculated and the process

continues until a complete schedule is found. The algorithm, then, backtracks to previously untried

delay alternatives and, if there are no more delay alternatives, to untried mode alternatives.

Hartmann and Drexl (1998) present an approach based on the approach used by Stinson et al.

(1978) for the single-mode case and almost identical to the mode and delay alternative approach of

Sprecher et al. (1997). The difference between the single- and multi-mode approaches lies in the

way partial schedules are expanded. The mode and extension alternative approach defines

decision points and mode alternatives in the same way that the mode and delay alternative

approach does. However, rather than attempting to start all eligible activities at a design point and

then delaying some subset of these activities to achieve resource feasibility, the mode and extension

alternative approach identifies subsets of resource feasible activities and begins one of these

subsets at the decision point. Backtracking tests all untried extension alternatives before testing

untried mode alternatives.

Resource-Constrained Project Scheduling Problem with Multiple Crashable Modes.

Ahn and Erenguc (1998) combine the MRCPSP and the Time/Cost Tradeoff Problem to form a

new problem, the Resource-Constrained Project Scheduling Problem with Multiple Crashable

 2-18

Modes (RCPSPMCM). In the RCPSPMCM, the duration of each activity is not only a function of

resource requirements (mode selection) but also of the amount of crashing (duration reduction by

increasing direct costs). For example, mode selection for an activity might be a matter of choosing

a skilled worker (charging a fixed hourly rate) or an unskilled worker (charging a different hourly

rate). The skilled worker would likely require less time to accomplish the activity. Duration

crashing, on the other hand, might be accomplished by paying either worker overtime, thereby

shortening the duration of the activity (whichever mode was selected) without changing the mode.

Because of the combinatorial nature of the problem and the success of heuristics, Ahn and Erenguc

propose a heuristic approach for this problem.

Mode-Identity, Resource-Constrained Project Scheduling Problem. Salewski et al.

(1996a, 1996b, 1997) introduce the RCPSP with Mode Identity (MIRCPSP). In many situations,

such as audit-staff scheduling, time-tabling, and course scheduling, the resources correspond to

individuals. This leads to an assignment-type of problem where each activity must be performed

by one or more of several individuals. Mode identity refers to the generalization of the RCPSP

where the set of all activities must be subdivided into subsets where all activities forming a subset

must be performed in the same mode. The RCPSP, then, might be viewed as a mode identity

problem where each activity is its own subset.

Expediting Resources. The concept of expediting resources was introduced by Deckro and

Hebert (1989) in their Resource Critical Project Crashing Problem (RCPCP) (Problem 6 in Figure

2-1). The RCPCP is identical to the RCPSP except that it allows a project to be crashed by

increasing critical resources in one or more periods. The objective is to determine the start time of

the activities and the critical resources to increase in order to meet the project due date at minimal

cost for additional resources. The problem can be extended to allow for penalty and bonus

payments based on a target due date.

Deckro and Hebert base their model (shown below) on the PWW formulation of the

RCPSP. The constraints limiting resources, RCPSP Constraints (8), are modified to

incorporate a new integer variable, qth , representing the units of expediting resources q used in

time period t. The new resource constraints are Constraints (19). New constraints are added

to limit the availability of expediting resources, Constraints (20). The objective function

 2-19

minimizes the cost of the expediting resources, qc . Objective (18) also includes a bonus, tb ,

for early completion of the project (by time G) and a penalty, tp , for late completion of the

project (after time G).

 Minimize ???
????

??
T

Gt
Jtt

G

t
Jtt

T

t
qtq xpxbhc

111

 (18)

 subject to 1??
?

j

j

l

et
jtx , j? (11)

 i

l

et
jt

l

et
it dtxtx

j

j

i

i

?? ??
??

, jOi j , ?? (12)

 qtqt

J

j
jtjq Rhxr ???

? 1

, tq ,? (19)

 qtqt Hh ? , tq ,? (20)

 ? ?0,1?jtx , tj ,? (9)

 integer and 0?qtH , tj ,? (21)

where

 jtx = 1 if activity j completes at time t ; 0, otherwise

 qth = units of resource q used at time t

 J = terminal node or activity

 dj = duration of activity j

 ej = early start time of activity j

 lj = late start time of activity j

 bj = bonus for early completion of project (at time t)

 cq = cost of a unit of resource q

 pj = penalty for late completion of project (at time t)

 G = desired project completion time

 T = late project completion time

 rjq = requirement for resource q by activity j

 Rqt = availability of resource q in time t

 2-20

 qtH = expediting availability of resource q in time t

 Oj = set of predecessors of activity j

Deckro and Hebert provide an example of the RCPCP solved using a commercial integer

program solver.

Kolisch and Frase (1996) extend the concept of expediting resources to include not only

renewable resources, but also nonrenewable resources. The problem they introduce, the Multi-

Modal, Resource-Constrained Project Scheduling Problem with Expediting Resources

(MRCPSP-EXP), also considers multiple activity execution modes (Problem 11 in Figure 2-1).

They solve the problem using a modification to the implicit enumeration scheme by Sprecher

(1994).

Generalized Precedence. Generalized precedence constraints extend the types of temporal

relationships between activities beyond the standard finish-start precedence. Generalized

precedence can be used to model finish-start, finish-finish, start-start, and start-finish precedence

types. De Reyck and Herroelen (1998a, 1999) show that all four types of precedence can, in fact,

be represented by the start-start precedence type with minimal time lags. The resulting problem is

the Generalized Resource-Constrained Project Scheduling Problem (GRCPSP) (Problem 3 in

Figure 2-1). When the GRCPSP is extended for multiple activity execution modes, the resulting

problem is the Generalized, Multi-Modal, Resource-Constrained Project Scheduling Problem

(GMRCPSP) (Problem 7 in Figure 2-1). The GMRCPSP has been addressed specifically by

Demeulemeester and Herroelen (1997). If maximal time lags are then included in the precedence

relationships, the resulting problem is the Multi-Modal, Resource-Constrained Project Scheduling

Problem with Generalized Precedence (MRCPSP-GPR) (Problem 9 in Figure 2-1). This problem

has been addresses by Herroelen et al. (1998) and De Reyck and Herroelen (1998a, 1998b, 1999).

In their survey of project scheduling, Kolisch and Padman (1998) point out that with the presence

of minimal and maximal time lags, a problem becomes much more complicated and standard

RCPSP algorithms generally fail to obtain solutions (Kolisch and Padman, 1998: 16). Solution

procedures that have been used are typically extensions of other procedures already discussed. For

example, De Reyck and Herroelen (1998a) extend a procedure used for the Discrete Time/Cost

Problem, and De Reyck and Herroelen (1999) use the concept of delay alternatives.

 2-21

Multi-Project Scheduling

Pritsker et al. (1969) are perhaps the first to explicitly address problems with multiple

projects. They mention the applicability of their model to multiple projects and formulate an

example with multiple projects, but they do not suggest any multi-project solution methodologies

other than lumping the projects together as one larger project. Since then, the following multi-

project problems have been addressed with solution methodologies designed to take advantage of

the multi-project nature of the problem.

Multi-Project Scheduling Problem. The Multi-Project Program Scheduling Problem (MPSP)

is presented by Wiley (1996) and Wiley et al. (1998). The objective of the problem is to minimize

the cost or duration of a multi-project program by crashing some of its activities. Unlike the

Activity Duration Crashing Problem, however, activity crashing is tied to specific limited

resources. That is, for every time period an activity is crashed, an amount of each resource is

consumed. Since these resources are limited, the amount of crashing possible is limited.

Wiley’s formulation is broadly based on the formulation by Deckro et al. (1992) for

scheduling work packages. Deckro et al. solve the work package problem using a standard linear

programming code. They also note the decomposability of the problem using algorithms such as

Benders’ partitioning or Dantzig-Wolfe decomposition. Berczi (1986) also models the scheduling

of work packages but uses goal programming to allow for multiple objectives.

Since Wiley’s multi-project model displays the familiar block-angular structure and since

variables are assumed to be continuous, Wiley decomposes the problem using the Dantzig-Wolfe

decomposition approach. Dantzig and Wolfe (1960) developed their decomposition principle to

exploit the block-angular structure of many large linear programs by decomposing the problem

based on resources. The decomposition is characterized by a subproblem for each distinct block

and one master problem. During the algorithm, the subproblems are iteratively solved, and during

each iteration, a solution proposal is passed to the master problem. The master problem records

and keeps track of all of these proposals. The master problem, then, seeks to identify a convex

combination of all the proposals submitted by Subproblem 1, and a convex combination of all the

proposals submitted by Subproblem 2, and so on, which, collectively, satisfy the coupling

constraints and which is optimal to the original problem.

Advantages to the decomposition approach are various. By decomposing a large problem, it is

often possible to solve linear programs of a size which would otherwise be unsolvable. The ability

 2-22

to solve large problems becomes even more attractive when the subproblems, themselves, have a

structure which can be exploited. Furthermore, the subproblems are independent and can be solved

on separate processors, leading to parallelization.

Another advantage to the decomposition approach is its economic interpretation (see Baumol

and Fabian, 1964; Lasdon, 1970: 160-163; Deckro et al., 1998). The decomposition can be

viewed as a decentralized decision process. In the context of a firm, the master problem represents

the problem of the corporation which seeks to optimize the overall good of the firm. The

subproblems can be viewed as subdivisions of the firm whose focus is on their respective

subdivision and not on the firm as a whole. Each subdivision has a set of unique constraints to

which it must adhere. There is also a set of constraints which couple the subdivisions. These may

be constraints on resources for which all subdivisions compete. The solution process begins with

each subdivision submitting a proposal to the firm based on a unit profit figure provided by the

firm. Unfortunately, a proposal which is good for one subdivision may not be good for another

subdivision or, more importantly, to the overall corporation. The firm receives these proposals

from the subdivisions and determines the impact each proposal has on the corporation and,

ultimately, the other subdivisions. The firm, then, revises its unit profit figures and hands those

down to the subdivision. The subdivisions submit new proposals based on the revised figures. The

process continues iteratively until an optimal set of decisions can be found. While the economic

interpretation of the decomposition method is frequently viewed in terms of the firm, it can likewise

be extended to any organization or process which can be decentralized. Clearly, balancing

resources amongst the units of a joint command would be a similar process, with the overall

commander acting as the corporation and the various units acting as subdivisions.

The master problem and subproblems of the decomposed MPSP can be easily solved using

commercial linear program solvers. An example is provided by Wiley (1996) and Wiley et al.

(1998) with 3 projects, a total of 39 activities, and 3 resource types (including a budget). Because

of the continuity of the variables, insightful sensitivity analysis is also made ava ilable.

Resource-Constrained, Multi-Project Scheduling Problem. The Resource-Constrained, Multi-

Project Scheduling Problem (RCMPSP) (Problem 5 in Figure 2-1), is presented by Deckro et al.

(1991). The RCMPSP is identical to the RCPSP except that it considers multiple projects. While

these multiple projects can be modeled as a single super-project and solved by the approaches

 2-23

described for single-project problems, Deckro et al. (1991) propose a promising approach used to

decompose the problem.

Solution of the problem is aided by recognition of the block-angular structure of the problem

where the individual projects make up the blocks. This structure has been exploited by Sweeney

and Murphy (1979) for the solution of large decomposable integer programs, including the multi-

item scheduling problem (Sweeney and Murphy, 1981). Sweeney and Murphy (1979) develop

their decomposition principle which is very similar to Dantzig-Wolfe decomposition in that it

exploits the block-angular structure of large problems to decompose them into a set of smaller,

easier-to-solve problems. The main difference is that the Sweeney-Murphy decomposition

algorithm is designed for integer problems, while Dantzig-Wolfe has focused primarily on

continuous, linear programs. The subproblems are solved to calculate a set of best solutions for

each subproblem. These sets of best solutions are fed to the master problem which attempts to

identify one solution from each subproblem which is both feasible and optimal to the original

problem. If a combination of solutions cannot be identified, additional solutions are generated by

the subproblems and fed to the master problem. This process continues iteratively until an optimal

solution is found.

The Sweeney-Murphy decomposition approach has been applied by Deckro et al. (1991) to the

RCMPSP. The master problem includes the resource constraints imposed on the overall program.

The subproblems include project-specific constraints. They provide an illustrative example with

eight projects. The original problem, before decomposition, would have 880 0-1 variables and 374

constraints – a prohibitively time consuming problem (Deckro et al., 1991: 114). After

decomposition, the largest subproblem had only 160 variables and the largest master problem had

only 110 variables. Deckro et al. (1991) also point out that the subproblems include project-

specific constraints which can be further subdivided into two sets: job completion constraints and

activity precedence constraints (Deckro et al., 1991: 114). The nature of both of these sets of

subproblem constraints lend themselves to further exploitation.

Multi-Modal, Resource-Constrained, Multi-Project Scheduling Problem. The Multi-Modal,

Resource-Constrained, Multi-Project Scheduling Problem (MRCMPSP) (Problem 8 in Figure 2-1),

is a further generalization of the RCPSP. It allows for multiple activity modes as well as multiple

projects. Vercellis (1994) presents this problem with an objective function to maximize the Net

 2-24

Present Value (NPV) of a multi-project program by determining the mode under which to perform

each activity.

Vercellis solves this problem using a decomposition approach based on Lagrangian relaxation.

Lagrangian relaxation is a method for simplifying, or relaxing, the constraint set of a problem.

Suppose that the constraint set consists of a set of complicating constraints and a set of more

tractable constraints, in the sense that, in the absence of the complicating constraints, the problem

would be solved relatively easily. It is possible to relax the problem by incorporating the

complicating constraints into the objective function using appropriate multipliers. If the

multipliers are fixed, the relaxed problem can then be solved for the original problem variables.

The solution approach then hinges on finding appropriate values for the multipliers.

Geoffrion (1974) applies the relaxation approach to integer programming problems where it

can be used to fathom solutions in branch-and-bound procedures and to derive cutting planes.

Chalmet and Gelders (1976) use the approach for solving a warehousing model formulated in 0-1

variables. Fisher (1981) discusses a number of important issues revolving around the use of

relaxation for integer programming problems including the selection of multipliers, the choice of

competing relaxations, and the incorporation of the lower and upper bounding capabilities of the

Lagrangian problem into branch-and-bounding procedures.

Vercellis (1994) uses Lagrangian relaxation where he takes project precedence constraints and

resource-partitioning constraints (these are the only two sets of constraints that tie projects to each

other) and moves them to the objective function with Lagrangian multipliers. The approach then

decomposes this Lagrangian relaxation into subproblems, one for each project, which are easier to

solve than the original integer program. The subproblems are solved using the branch-and-bound

algorithm presented in Speranza and Vercellis (1993). The approach was tested on a number of

problems with up to 10 projects, up to 20 activities per project, 2 or 3 modes per activity, and as

many as 6 renewable resources. Problem solution times were all on the order of minutes (Vercellis,

1994: 274).

Generalized, Multi-Modal, Resource-Constrained Multi-Project Scheduling Problem. Van

Hove (1998) presents the Generalized, Multi-Modal, Resource-Constrained Multi-Project

Scheduling Problem (GMRCMPSP) (Problem 10 in Figure 2-1). This is a RCPSP with multiple

modes, start-start precedence relationships with minimal lags, and multiple projects. Van Hove

decomposes the problem using Sweeney-Murphy decomposition and then solves the subproblems

 2-25

using a modification of the enumeration scheme by Sprecher (1994). Van Hove solves a problem

with 4 projects, 25 activities per project, 2 or 4 modes per activity, and 4 resources per project.

The projects are coupled together by a constraint on the use of nonrenewable resources.

Summary

A wide variety of problem types and solution methodologies provide a foundation upon which

to formulate and solve the MRCMPSP-GPR/EXP (Problem 12 in Figure 2-1). A formulation of

the MRCMPSP-GPR/EXP, based on the PWW problem, is presented in the next chapter.

Subsequent chapters present greater detail on the applicability of the above approaches to the

MRCMPSP-GPR/EXP.

 3-1

III. Methodology

Introduction

This chapter presents a mathematical formulation of the Multi-Modal, Resource-Constrained,

Multi-Project Scheduling Problem with Generalized Precedence and Expediting Resources

(MRCMPSP-GPR/EXP). It also discusses the complexity of the MRCMPSP-GPR/EXP and

describes an approach for decomposing the problem. The decomposition of the problem serves as

the foundation for the solution approach developed in this dissertation. While the specific

methodology for solving the decomposed problem is detailed in subsequent chapters, this

methodology is outlined in this chapter to provide an overview of the research that follows.

Mathematical Formulation

The MRCMPSP-GPR/EXP consists of a multi-project program where precedence

relationships (both standard finish-start and generalized) may exist between activities within a

single project or between activities of different projects. Figure 3-1 shows the activity-on-node

network representation of an example problem with three projects. Within the network, nodes

represent activities while precedence relationships are represented by the directed arcs between the

nodes. Single-headed arcs denote standard precedence while double-headed arcs denote generalized

precedence. Only one generalized precedence is shown in the example problem – between activities

B6 and C4.

Each activity has one or more alternative execution modes which determine the duration and

resource requirements of the activity. By selecting alternative execution modes for an activity, it

may be possible to either crash or extend the duration of the activity. In practice, crashing an

activity generally comes at the cost of greater resource utilization while extending an activity may

release resources for use elsewhere.

Resources may be renewable, nonrenewable, or doubly constrained. Renewable resources are

those which are reusable from period to period (such as manpower, machinery, and space) but are

limited on a per-period basis. Nonrenewable resources are those which are expended once used

(such as fuel and construction materials) and are limited at the project or program level. Doubly-

constrained resources are those whose availability is limited at the project or program level, as well

as on a per-period basis. Budget is a good example of a resource which may be doubly

 3-2

constrained. While the total program budget may be $1 million dollars, spending may be capped at

$10,000 per period.

A1

A3

A2 A4

A5

B1

B4

B2

B6

B5

B7B3

C1

C4

C5

C6

C2

C3

T

Activities

Program “ABC”

Project A

Project B

Project C

Figure 3-1. Activity-on-Node Representation of Example Problem 1

The development of a feasible program schedule is constrained by limitations on resources, as

well as the program planning horizon. Because of the tradeoff between the duration and resource

utilization of each activity, prudent selection of activity execution modes becomes crucial. In

practice, it is generally necessary to crash some activities and extend others. For example,

consider the three-activity project depicted in Figure 3-2 with activity data in Table 3-1. (Note that

activity T is a dummy activity with zero duration and resource utilization.) If the shortest-duration

modes are selected for each activity, then Activity 1 will require four units of some renewable

resource and Activity 2 will require five units of the same resource. If sufficient resources were

 3-3

available over the entire project planning horizon (i.e., at least nine units per period), Activities 1

and 2 could start simultaneously and project completion would occur at the end of Period 4. If,

however, only eight units of resource are available in each time period, then the activities would

have to be performed in series and project completion would occur at the end of Period 7. Though

the shortest-duration mode was selected for each activity, there is no guarantee that this selection

yields the earliest project completion time. Furthermore, this selection of modes need not even

yield a feasible schedule. If, for instance, the project must be completed no later than Time Period

6, this schedule is not feasible.

 2

 1

T

Figure 3-2. Example Problem 2

Table 3-1. Example Problem 2

Activity

Mode

Duration

Resource
Utilization

1 1 3 4
 2 5 2
2 1 4 5
 2 7 2

T 1 0 0

In Example Problem 2, it is also possible to select the longest-duration modes for each activity.

The activities can be started simultaneously since their combined resource utilization of five units

does not exceed the per-period availability of eight units. The earliest project completion time,

though, is still at the end of Period 7 (i.e., the maximum duration of the two activities). Again, this

selection of modes is infeasible for a planning horizon of six time periods.

The only feasible schedule for the project exists when the longest-duration mode is selected for

Activity 1 and the shortest-duration mode is selected for Activity 2. The activities can be started

simultaneously since they require a total of only seven units of resource and the project can be

completed by the end of Period 5 which is within the project’s planning horizon of six periods.

 3-4

While the crashing and extending of activities (through mode selection) is vital in the program

scheduling process, additional scheduling options may be made possible through the availability of

additional resources. These additional, or expediting, resources may be obtained at some fixed

price, subject to availability. For example, during a military airlift operation the availability of

transport aircraft is limited on a per-period basis. It is well established that the careful assignment

of specific types of transport aircraft to specific routes is essential to a successful operation (this

assignment of aircraft to routes constitutes mode selection). It may be possible, however, to

purchase, reassign, or lease additional aircraft to supplement the aircraft which are regularly

available. This is, after all, the basis for the Ci vilian Reserve Aircraft Fleet (CRAF) program.

Just as the availability of regular aircraft is limited so is the availability of the expediting aircraft.

Furthermore, though the acquisition costs of the regular aircraft may be viewed as a sunk cost (at

least in regards to the specific operation), the acquisition cost for the expediting aircraft are

explicitly considered since they are incurred specifically for the given operation.

Expediting resources are so named because they give greater flexibility to the selection of

activity modes and start times. Consequently, the set of feasible schedules becomes larger and it

may be possible to find a feasible schedule with an earlier completion time. In Example Problem

2, if at least one unit of expediting resource is available in each time period, then selecting the

shortest-duration mode for each activity will lead to a feasible schedule which can be completed by

the end of Period 4 (i.e., project completion has been expedited). The only question that remains is

whether or not the benefit of finishing the project one time period earlier than otherwise possible

outweighs the cost of the additional resource. The answer to this question depends, of course, on

the cost of the expediting resource and the benefit gained by expediting project completion.

The scheduling objective may take a variety of forms. For example, the project’s duration may

be minimized subject to a budget restriction on expediting resources. The cost of expediting

resources may, on the other hand, be minimized subject to completing the project by a fixed due

date. Even more general objectives may include bonuses and penalties for early or late completion

of the project relative to the due date or they may include costs based on the activity modes

selected. Regardless of the program objective considered, any solution to the MRCMPSP-

GPR/EXP will include the start time and execution mode of each activity, as well as the types and

number of expediting resources to acquire.

 3-5

An important note to consider is that, while more scheduling options (i.e., activity execution

modes and expediting resources) provide a larger set of feasible schedules from which to choose

and give a planner greater flexibility, the problem also becomes larger and it becomes more

difficult to find an optimal schedule.

Assumptions. The mathematical formulation of the MRCMPSP-GPR/EXP begins with the

following assumptions:

1. A program consists of a fixed set of interrelated projects. The interrelationships between
activities in one project and activities in another project are fixed and known.

2. A project consists of a fixed set of interrelated activities. The interrelationships between
activities within a project are fixed and known.

3. An activity is performed in one of multiple alternative execution modes. Each mode has a
fixed duration and per period requirement for renewable, nonrenewable, and doubly-
constrained resources. The demand for a given resource remains constant from period to
period.

4. Activities are not allowed to be split; once an activity begins, it will continue until
complete.

5. The program has a fixed and known planning horizon. The program may also have a due
date. Each individual project has an early start time no earlier than time period zero and a
fixed due date no later than the program due date.

6. Activity durations and resource utilizations, as well as resource availabilities, are integer
valued.

Notation. This section presents the notation used in the mathematical formulation of the

MRCMPSP-GPR/EXP. The notation is explained further when introduced in the discussion that

follows.

General Sets:

 P = the number of projects

 Ip = the set of activities in project p

 Mpi = the set of execution modes for activity i of project p

 3-6

Activity Interrelationship Sets:

 O0 = the set of program-level (inter-project) standard precedence relations

 Op = the set of standard precedence relations within project p

 N0 = the set of program-level (inter-project) generalized precedence relationships

 Np = the set of generalized precedence relationships in project p

Resource Sets:

 RQ = the set of all renewable resources

 RQ0 = the set of program-level renewable resources

 R
pQ = the set of renewable resources unique to project p

 NQ = the set of all nonrenewable resources

 NQ0 = the set of program-level nonrenewable resources

 N
pQ = the set of nonrenewable resources unique to project p

Note that doubly-constrained resources are not explicitly considered but they belong to the set

of renewable resources and to the set of nonrenewable resources. Doubly-constrained resources

will be identified solely by their membership in the other two sets of resources.

Special Indices:

 p(i) = activity i of project p

 T = the dummy terminal activity of the program

 Tp = the dummy terminal activity of project p

Time-Related Parameters:

 F = the early program completion time

 G = the program completion due date

 D = the program planning horizon (F < G < D)

 3-7

 Ep = the early start time of project p

 Fp = the early completion time of project p

 Gp = the completion due date of project p

 Dp = the planning horizon of project p (Fp < Gp < D p)

 epi = the early start time of activity p(i)

 lpi = the late start time of activity p(i)

 wpi = [epi, lpi], the start time window of activity p(i)

 dpim = the duration of activity p(i) in mode m

Resource-Related Parameters:

 R
pimqr = the units of renewable resource q required by activity p(i) in mode m

 R
qtR = the units of renewable resource q available at time t

 R
qtH = the units of expediting, renewable resource q available at time t

 N
pimqr = the units of nonrenewable resource q required by activity p(i) in mode m

 N
qR = units of nonrenewable resource q available

 N
qH = the units of expediting, nonrenewable resource q available

Cost Parameters:

 cpimt = cost of beginning activity p(i), executed in mode m, at time t

 R
qtc = cost of an expediting unit of renewable resource q at time t

 N
qc = cost of an expediting unit of nonrenewable resource q

 bt = benefit for completing the program at time t (early completion)

 at = cost for completing the program at time t (late completion)

 3-8

Binary Variables:

 xpimt = 1, if activity p(i) is executed in mode m and starts at time t

 = 0, otherwise

 tTp
x = 1, if terminal activity Tp of project p starts at time t

 = 0, otherwise

 Ttx = 1 if program terminal activity T starts at the beginning of period t

 = 0, otherwise

Expediting Resource Variables:

 R
qth = the units of expediting, renewable resource q used at time t

 N
qh = the units of expediting, nonrenewable resource q obtained

Numbering of Activity Modes. The execution modes of each activity in the program are

numbered in order of increasing duration. In mathematical terms, let Mpi be the set of execution

modes for activity p(i), letM= M pi be the number of modes of activity p(i), and let dpim be the

duration of mode m of activity p(i). Then for each activity, its execution modes will be numbered

such that d d dpi pi piM1 2? ? ? .

Activity Start Time Windows. One of the advantages of the Pritsker, Watters, Wolfe (1969)

model of the Resource-Constrained Project Scheduling Problem (RCPSP) over the Bowman (1959)

model is its variable definition. For any given activity i, Bowman defines a 0-1 variable for every

time period in which activity i could be in progress. Pritsker, Watters, and Wolfe, by contrast,

define a 0-1 variable for only those time periods in which activity i can finish. This alternate

variable definition serves to reduce the number of variables in the model. Because of its variable-

reduction property, the Pritsker, Watters, Wolfe variable definition is used in this study, with one

modification – instead of reflecting activity finish times, the variables in the subject model reflect

activity start times. This modification has no technical impact on the formulation and is used

simply out of this author’s preference.

 3-9

 (a) (b)

(c)

Figure 3-3. Example Activity Start Time

 3-10

With the modified Pritsker, Watters, Wolfe variable definition, each activity has a set of 0-1

variables which reflect the possible start times for the activity. It is possible to define a start time

variable for every period in the program planning horizon, but this typically results in more

variables than necessary. For example, assume a program has one activity with unit duration and

that the program planning horizon is ten time periods (see Figure 3-3). The single activity would

then have ten associated start time variables since it could start in any of the ten time periods in the

program planning horizon (Figure 3-3a). On the other hand, if the duration of the activity were

two, then the activity will have only nine associated variables since it cannot possibly start in time

period ten and finish by the end of the planning horizon (Figure 3-3b).

Now consider the addition of a second activity of duration two (Figure 3-3c). If the original

activity must precede the second, then the number of variables associated with the original activity

reduces to seven. If the original activity begins in time eight or after, it cannot finish in time for the

second activity to be complete by the end of the program planning horizon. Following this

inductive reasoning, it is clear that the more constrained an activity becomes in terms of duration

and activity interrelationships, the fewer variables are required to reflect all of the possible start

times of the activity. This is the power of the Pritsker, Watters, and Wolfe variable definition.

Since there is considerable benefit in reducing the number of variables as much as possible (to

improve computational efficiency), it is useful to determine the minimal interval of possible start

times for each activity. This minimal interval is referred to as the activity’s start time window. To

determine the start time window for all of the activities in the program, the Generalized Critical

Path Method (GCPM) is used.

The GCPM is a generalization of the Critical Path Method (CPM). While the CPM (see

Schtub, Bard, and Globerson, 1994: 339) finds the early and late start times of activities subject to

standard precedence relationships, the GCPM extends this approach to generalized precedence

relationships. The GCPM algorithm is as follows:

Generalized Critical Path Method (GCPM)

1. Set the early start time of each activity equal to the release date of the project of which it is
a member.

2. For each activity i, in numerical order, change its early start time to the greatest of the

following:

 3-11

a. its current early start time,
b. the early start time plus duration of each of its standard predecessors,
c. the early start time of activity j plus minimum time lag between activity j and activity

i, for each activity j which is a generalized predecessor of activity i.

3. If the early start time of any activity changed at Step 2, repeat Step 2.

4. For each activity i, in numerical order, check each activity for which activity i is a

generalized predecessor. If the early start time of any generalized successor of activity i is
greater than the early start time of activity i plus the maximum time lag, change the early
start time of activity i to the greatest of the early start time minus maximum time lag of
each generalized successor of activity i.

5. If the early start time of any activity changed at Step 4, repeat Step 2. If not, the early

start time of each activity has been found.

6. Set the late start time of each activity equal to the program horizon minus its duration.

7. For each activity i, in reverse numerical order, change its late start time to the least of the

following:

a. its current late start time,
b. the late start time of each of its standard successors minus the duration of activity i,
c. the late start time of each activity generalized successor of activity i minus its

minimum time lag from activity i.

8. If the late start time of any activity changed at Step 7, repeat Step 7.

9. For each activity i, in reverse numerical order, check each activity which is a generalized

predecessor of activity i. If the late start time of activity i is greater than the late start time
of any generalized predecessor plus its maximum lag time, change the late start time of
activity i to the least of the late start times plus maximum time lag of each generalized
predecessor of activity i.

10. If the late start time of any activity changed at Step 9, repeat Step 7. If not, the late start

time of each activity has been found.

With the GCPM defined, activity start time windows are determined using the following four-

step procedure:

Determining Start Time Windows

Step 1. Relax the problem to an unconstrained network problem, eliminating all of the
resource considerations of the original problems. Consider only the activity
precedence relationships and project early start times, Ep.

 3-12

Step 2. Using Mode 1 of each activity (i.e., the modes of shortest duration), use the GCPM to

determine the early start time, epi, of each activity (this includes the early completion
time, F, of the program).

Step 3. Using Mode 1 of each activity and letting the program planning horizon, D, be the

expected completion dates of the program and projects, use the GCPM again to
determine the late start time, lpi, of each activity.

Step 4. The start time window of activity p(i) is the closed interval [epi, lpi].

Note that the use of the shortest-duration mode of each activity is important at Step 2. To see

why, assume all activities are set to Mode 1 except for activity p(i) (a non-terminal activity) which

is set to Mode m*. (We assume that the terminal activity is a dummy activity of zero duration.)

Assume that the duration of Mode m* is k units longer than that of Mode 1. When the GCPM is

used to determine the early start times of the activities, either activity p(i) is on a critical path or it

is not. If it is, then there is at least one activity, call it activity q(j) (q may equal p), which is on the

same critical path and which immediately follows activity p(i). If epi is the early start time of

activity p(i), then the early start time of activity q(j) is eqj = epi + dpim* = epi + dpi1 + k. If activity

q(j) has no other predecessors which are critical, then eqj is at least one time period later than if

activity p(i) were executed in Mode 1 and, consequently, eqj is not the earliest possible start time of

activity q(j). If activity q(j) has other predecessors which are also critical activities or if activity

p(i) is not on a critical path, then the above argument is not valid. However, since we do not know

a priori the relation of activities p(i) and q(j) to the critical paths, it is necessary to use Mode 1, the

shortest-duration mode, for each activity to prevent such problems.

The argument for using Mode 1 for every activity in Step 3 is similar to the argument for using

them in Step 2. If activity p(i) is scheduled so it finishes as late as possible, but it is executed in a

mode with a longer duration than that of Mode 1, the resultant start time will be earlier than if

activity p(i) were executed in Mode 1. Consequently, the calculated late start time of activity p(i)

will be too early.

Constraints. As constraints are developed below, they are consecutively numbered. The

number assigned to a constraint will remain unchanged throughout the discussion. The constraints

are:

 3-13

Execution Mode and Activity Start Time

An activity can be executed in only one mode and is started only once. Define variable xpimt to

be unity if activity p(i) is executed in mode m and starts at the beginning of time period t; xpimt

equals zero otherwise. The constraint

 x pimt
t wm M pipi ??
?? ? 1 , PpIi p ???? , (1)

assures a unique execution mode and start time for each activity. Note that Ip is the set of activities

in project p, where P is the set of projects in the program, Mpi is the set of modes for activity p(i),

and the time index t is summed over the start time window wpi of activity p(i).

Activity Precedence

Activity precedence may occur at the program level (i.e., inter-project) or at the project level

(i.e., intra-project). Precedence constraints may indicate that one activity precedes another

(standard precedence) or that the start times of two activities are related (generalized precedence).

Standard precedence is common to scheduling networks. Generalized precedence is less common

but is included for its applicabili ty to many problems of interest, including Joint Campaign

Planning (where the start times of two or more operations may need to be coordinated) and

program management (where concurrent engineering approaches are being used).

Recall that the duration of activity p(i) is dependent on its execution mode. Let dpim be a

known parameter which denotes the duration of activity p(i) when executed in mode m. In

addition, recall that variable xpimt is unity for exactly one mode/start time combination. The

duration of activity p(i) is, then, represented by the term,

d xpim pimt
t wm M pipi ??
?? .

For example, if activity p(i) is executed in mode m* and begins at time t*, then xpim*t* = 1 and

the duration of activity p(i) is dpim*.

The start time of activity i is given by the term:

? ?
? ?i iMm wt

pimttx .

Given the above expressions for the duration and start time of activity p(i), standard

precedence constraints can be defined. If activity p(i) directly precedes activity p(j), then the start

 3-14

time of activity p(j) must be no earlier than the start time of activity p(i) plus the duration of

activity p(i). Thus,

? ?? ?? ?
? ?? ?? ?

??
pi pipi pipj pj Mm wt

pimtpim
Mm wt

pimt
Mm wt

pjmt xdtxtx , PpOji p ???? ,),(

or

 0)(??? ? ?? ?
? ?? ? pj pjpi pi Mm wt

pjmt
Mm wt

pimtpim txxdt , PpOji p ???? ,),((2)

where Op is the set of standard precedence relations in project p and (,)i j Op? denotes that

activity p(i) precedes activity p(j).

At the program level, assume activity i of project p directly precedes activity j of project p .

The start time of activity p (j) must, then, be no earlier than the start time of activity p(i) plus the

duration of activity p(i). Thus,

? ?? ?? ?
? ?? ?? ?

??
pi pipi pijp jp Mm wt

pimtpim
Mm wt

pimt
Mm wt

jmtp xdtxtx , 0),(Ojppi ??

or

 0)(??? ? ?? ?
? ?? ? jp jppi pi Mm wt

jmtp
Mm wt

pimtpim txxdt , 0),(Ojppi ?? (3)

where O0 is the set of program-level standard precedence relations and 0),(Ojppi ?? denotes that

activity p(i) precedes activity p (j).

Generalized precedence constraints at the project level are given by:

 min
ij

Mm wt
pimt

Mm wt
pjmt

pi pipj pj

txtx ??? ? ?? ?
? ?? ?

, PpNji p ???? ,),(

 max
ij

Mm wt
pimt

Mm wt
pjmt

pi pipj pj

txtx ??? ? ?? ?
? ?? ?

, PpNji p ???? ,),(

or

 3-15

 0min ??? ? ?? ?
? ?? ? pj pjpi pi Mm wt

pjmtij
Mm wt

pimt txtx ? , PpNji p ???? ,),((4)

 0max ???? ? ?? ?
? ?? ? pj pjpi pi Mm wt

pjmtij
Mm wt

pimt txtx ? , PpNji p ???? ,),((5)

where Np is the set of generalized precedence relationships in project p, pNji ?),(denotes that

activity p(i) is a generalized predecessor of activity p(j), and min
ij? and max

ij? are the minimal and

maximal start time lags between activities i and j.

At the program level, generalized precedence constraints are given by:

 0min ??? ? ?? ?
? ?? ? jp jppi pi Mm wt

jmtpij
Mm wt

pimt txtx ? , 0),(Njppi ?? (6)

 0max ???? ? ?? ?
? ?? ? jp jppi pi Mm wt

jmtpij
Mm wt

pimt txtx ? , 0),(Njppi ?? (7)

where N0 is the set of program-level generalized precedence relationships and 0),(Njppi ??

denotes that activity p(i) is a generalized predecessor of activity p (j).

Program/Project Completion

The program has a fixed planning horizon by which the program must be completed and

individual projects may have individual planning horizons as well. (If a project does not have a

distinct horizon, its horizon is assumed to be the same as the program’s.) Planning horizons must

be chosen such that the projects / program can be feasibly completed within the planning horizons.

The convention used in the Program Attributes Generator with Expediting Resources (PAGER),

which is introduced in the next chapter, is to calculate the planning horizon simply by adding the

duration of the longest-duration mode of each activity. The program horizon represents the

minimum amount of time required to complete the program if regularly-available resources are

constrained to a point where only one activity can be scheduled at a time and in its longest-duration

mode.

The planning horizons are used in determining activity start time windows. Though planning

horizons are considered when the start time windows are calculated, additional constraints are

required to enforce the planning horizons. Otherwise, it is possible for an activity to start within its

start time window and end beyond a project or program planning horizon. For instance, suppose

 3-16

project p has dummy terminal activity Tp and that Tp has a single predecessor, activity p(i)*. Since

activity Tp has zero duration, the late start time of activity p(i)* is calculated as the horizon of

project p less the duration of activity p(i)* executed in its shortest mode. If activity p(i)* begins

at its late start time but, however, in a mode of longer duration, its completion time will be beyond

the project planning horizon. It becomes necessary, then, to include completion time constraints.

 To simplify the completion time constraints, dummy terminal activity, T, is added for the

program and dummy terminal activity, Tp, is added for each project p. Terminal activities have

zero duration. Then,

 Dtx
Twt

Tt ??
?

 (8)

 p
wt

tT Dtx
pT

p
??

?
, ? ?p P (9)

Resources

There are three types of resources: renewable resources, nonrenewable resources, and doubly-

constrained resources. Doubly-constrained resources are handled by extending the sets of

renewable and nonrenewable resources and are not modeled explicitly. Thus, if resource q* is a

doubly-constrained resource, renewable resource constraints are added to represent the per-period

restriction on resource q* (one constraint for each time period) and a single nonrenewable resource

constraint is added to represent the overall restriction on resource q*.

Activity p(i) has a per-period requirement of R
pimqr units of renewable resource q if executed in

mode m and there are R
qtR units of renewable resource q available in time period t. Expediting

units of renewable resource q are available in time period t at a per unit cost of R
qtc and up to the

limit of R
qtH additional units. Activity p(i) also has a requirement of N

pimqr units of nonrenewable

resource q if executed in mode m. There are N
qR units of nonrenewable resource q available for

the entire program or project. Expediting units of nonrenewable resource q are available at a per

unit cost of N
qc and up to the limit of N

qH additional units.

Resources may be specific to a given project (project-level) or may be in demand by more than

one project (program-level). Let RQ0 be the set of program-level renewable resources and let R
pQ

 3-17

be the set of renewable resources unique to project p. Similarly, let NQ0 be the set of program-

level nonrenewable resources and let N
pQ be the set of nonrenewable resources unique to project p.

If variable R
qth is the number of expediting units of renewable resource q used in time period t

and variable N
qh is the number of expediting units of nonrenewable resource q used, then for

project-level renewable resources:

 R
qt

R
qt

Ii Mm

t

dtt
pimt

R
pimq hRxr

p pi pim

??? ? ?
? ? ???

*

* 1

, PpDEtQq pp
R
p ????],,[*,

or

 R
qt

Ii Mm

t

dtt

R
qtpimt

R
pimq Rhxr

p pi pim

??? ? ?
? ? ???

*

* 1

, PpDEtQq pp
R
p ????],,[*, (10)

and

 R
qt

R
qt Hh ? , PpDEtQq pp

R
p ????],,[, (11)

For program-level renewable resources in demand by more than one project:

 R
qt

Pp Ii Mm

t

dtt

R
qtpimt

R
pimq Rhxr

p pi pim

??? ? ? ?
? ? ? ???

*

* 1

,],0[*,0 DtQq R ??? (12)

and

 R
qt

R
qt Hh ? ,],0[,0 DtQq R ??? (13)

For project-level nonrenewable resources:

 N
q

Ii Mm wt

N
qpimt

N
pimq Rhxr

p pi pi

??? ? ?
? ? ?

, PpQq N
p ??? , (14)

and

 N
q

N
q Hh ? , PpQq N

p ??? , (15)

For program-level nonrenewable resources in demand by more than one project:

 N
q

N
q

Pp Ii Mm wt
pimt

N
pimq Rhxr

p pi pi

??? ? ? ?
? ? ? ?

, NQq 0?? (16)

 3-18

and

 N
q

N
q Hh ? , NQq 0?? (17)

Objective Function. A wide variety of objective functions may be used for the MRCMPSP-

GPR/EXP. The objective may be stated generally as the minimization of program costs subject to

a completion due date. The generality of the objective function is dependent on what program

costs are included. Three objective functions are specifically addressed here, each successive

function being a generalization of the previous. The algorithm developed for the MRCMPSP-

GPR/EXP solves for the most general of the objective functions and, consequently, for the more

specific.

1. Minimize Program Duration

One common objective is to minimize program duration. In this case, the objective function is:

 Minimize ?
?

?
D

Ft
Tttxz (18)

where F is the earliest possible completion time of the program and D is the program due date.

This objective function could be accompanied by a budget constraint to restrict program cost,

such as the cost of expediting resources.

2. Minimize Program Expediting and Completion Costs

A more general objective is to minimize program costs, including the cost of expediting

resources and the penalty for late program completion. In this case, the objective function

becomes:

 Minimize ??? ?
??? ?

???
D

Ft
Ttt

Qq

N
q

N
q

Qq

D

t

R
qt

R
qt xahchcz

NR 0

 (19)

where R
qtc and N

qc are the costs for expediting resources and at is the cost for completion of the

program at time t. Note that program completion costs could be bonuses for early completion

(completion by some target completion date or due date, G) and/or penalties for late completion

(vis-à-vis G). Since this is a minimization function, a bonus (a negative cost) would be negative-

valued. If both bonuses and penalties were considered, the final term in the objective function

?
?

D

Ft
Ttt xa

 3-19

would be divided between two terms, one for bonuses on the interval [F, G] and the other for

penalties on the interval [G+1, D] as in

???
????

??
D

Gt
Ttt

G

Ft
Ttt

D

Ft
Ttt xaxaxa

1

PenaltyBonus .

Objective Function (19) is a generalization of Objective Function (18), to minimize program

duration. If the costs of expediting resources are moved to the constraint set as part of a budget

constraint, or if these costs are considered negligible, then costs R
qtc and N

qc become zero. In

addition, if the completion costs, at, are set to t, then Objective Function (19) is precisely the

objective of minimizing program duration.

3. Minimize Program Mode/Time, Expediting, and Completion Costs

A further generalization is to minimize program costs, including costs assessed for executing

an activity in a given mode and starting at a given time, the cost of expediting resources, and the

completion costs. In this case, the objective function becomes:

Minimize

???? ?? ? ? ?
????? ?? ? ? ?

?????
D

Gt
Ttt

G

Ft
Ttt

Qq

N
q

N
q

Qq

D

t

R
qt

R
qt

Pp Ii Mm

D

t
pimtpimt xaxahchcxcz

NR
p pi 1

PenaltyBonus

00

 (20)

where cpimt is the cost for executing activity p(i) in mode m and starting at time t.

If costs cpimt are set to zero, Objective Function (20) reduces to Objective Function (19).

Complete Model. The complete formulation of the MRCMPSP-GPR/EXP, with Objective

Function (20), is given by:

Minimize

 ???? ?? ? ? ?
????? ?? ? ? ?

?????
D

Gt
Ttt

G

Ft
Ttt

Qq

N
q

N
q

Qq

D

t

R
qt

R
qt

Pp Ii Mm

D

t
pimtpimt xaxahchcxcz

NR
p pi 1

PenaltyBonus

00

 (20)

Subject To

 x pimt
t wm M pipi ??
?? ? 1 , PpIi p ???? , (1)

 0)(??? ? ?? ?
? ?? ? pj pjpi pi Mm wt

pjmt
Mm wt

pimtpim txxdt , PpOji p ???? ,),((2)

 3-20

 0)(??? ? ?? ?
? ?? ? jp jppi pi Mm wt

jmtp
Mm wt

pimtpim txxdt , 0),(Ojppi ?? (3)

 0min ??? ? ?? ?
? ?? ? pj pjpi pi Mm wt

pjmtij
Mm wt

pimt txtx ? , PpNji p ???? ,),((4)

 0max ???? ? ?? ?
? ?? ? pj pjpi pi Mm wt

pjmtij
Mm wt

pimt txtx ? , PpNji p ???? ,),((5)

 0min ??? ? ?? ?
? ?? ? jp jppi pi Mm wt

jmtpij
Mm wt

pimt txtx ? , 0),(Njppi ?? (6)

 0max ???? ? ?? ?
? ?? ? jp jppi pi Mm wt

jmtpij
Mm wt

pimt txtx ? , 0),(Njppi ?? (7)

 Dtx
Twt

Tt ??
?

 (8)

 p
wt

tT Dtx
pT

p
??

?
, ? ?p P (9)

 R
qt

Ii Mm

t

dtt

R
qtpimt

R
pimq Rhxr

p pi pim

??? ? ?
? ? ???

*

* 1

, PpDEtQq pp
R
p ????],,[*, (10)

 R
qt

R
qt Hh ? , PpDEtQq pp

R
p ????],,[, (11)

 R
qt

Pp Ii Mm

t

dtt

R
qtpimt

R
pimq Rhxr

p pi pim

??? ? ? ?
? ? ? ???

*

* 1

,],0[*,0 DtQq R ??? (12)

 R
qt

R
qt Hh ? ,],0[,0 DtQq R ??? (13)

 N
q

Ii Mm wt

N
qpimt

N
pimq Rhxr

p pi pi

??? ? ?
? ? ?

, PpQq N
p ??? , (14)

 N
q

N
q Hh ? , PpQq N

p ??? , (15)

 3-21

 N
q

N
q

Pp Ii Mm wt
pimt

N
pimq Rhxr

p pi pi

??? ? ? ?
? ? ? ?

, NQq 0?? (16)

 N
q

N
q Hh ? , NQq 0?? (17)

 ? ?x pimt ? 0 1, , ? p i m t, , , (21)

 0?R
qth and integer, tq,? (22)

 0?N
qh and integer, q? (23)

Problem Size and Complexity

The mathematical formulation of the MRCMPSP-GPR/EXP is, as expected, large and

complicated. The number of variables and constraints for even a relatively small problem can be

daunting. Returning to the example illustrated in Figure 3-1, consider the activity data listed in

Table 3-2. The example problem has 3 projects, a total of 19 activities (including the dummy

program terminal activity), and up to three modes per activity. In addition, there are two

renewable resources, two nonrenewable resources, and one doubly-constrained resource, all

considered to be program-level resources. A program planning horizon of 30 time periods has been

assumed.

The number of binary variables, xpimt, may be as many as

?? ?? ? ? ?
?? ?? ? ? ?

??
T

T

pT

pT

p pi pi

pi

l

et

P

p

l

et

P

p

I

i

M

m

l

et

111
11 1 1

,

where the first term represents the non-dummy activities, the second represents the project dummy

terminal activities, and the last term represents the program dummy terminal activity. This number

can be approximated as WMIP p ??? , where pI is the average number of activities per project

(including dummy terminal activities), M is the average number of modes per activity, and W is

the average length of the activity start time windows. In the example problem, there are on the

order of 350 binary variables, assuming 10 to be the average length of the activity start time

windows. (Clearly, the tightness of the start time windows will affect the problem size.)

The number of renewable resource variables, R
qth , is

DQR ? ,

 3-22

where RQ is the total number of renewable and doubly-constrained resources (project-level and

program-level) and D is the program planning horizon. In the example problem, there are 90

renewable resource variables.

Table 3-2. Activity Data for Example Problem

Act Mode Dur R1 R2 N1 N2 D1
A1 1 2 0 4 4 4 9

2 5 10 0 3 4 6
A2 1 4 0 3 6 8 7
A3 1 2 3 0 9 1 9

2 9 0 6 9 1 5
A4 1 4 0 9 9 8 4

2 6 0 9 7 7 3
3 9 6 0 6 7 3

A5 1 3 0 10 10 2 5
B1 1 2 3 0 9 7 5
B2 1 6 7 0 5 6 9

2 8 0 5 5 2 8
B3 1 8 8 0 2 10 4
B4 1 10 1 0 6 8 8
B5 1 4 0 2 10 5 7

2 8 0 2 10 5 5
3 10 6 0 10 5 2

B6 1 5 0 8 5 3 4
2 6 0 6 5 2 3

B7 1 2 8 0 3 5 6
2 4 6 0 3 5 4
3 10 4 0 3 5 1

C1 1 1 0 7 8 7 4
2 6 4 0 6 5 3
3 10 0 7 4 5 2

C2 1 10 4 0 2 4 5
C3 1 2 3 0 5 8 9
C4 1 5 0 5 4 10 5

2 8 0 5 3 7 4
3 10 6 0 2 7 4

C5 1 9 0 3 8 1 3
C6 1 3 8 0 8 10 6

2 6 7 0 6 9 5
3 10 7 0 3 7 4

T 1 0 0 0 0 0 0

The number of nonrenewable resource variables, N
qh , is

NQ .

That is, one variable for each nonrenewable resource (project- and program-level) and one variable

for each doubly-constrained resource (project- and program-level). In the example problem, there

are three nonrenewable resource variables.

In all, the example problem has 443 variables. Table 3 -3 summarizes these results.

 3-23

Table 3-3. Number of Variables

Variable
Type

Number of
Variables

Variables in
Example Problem

xpimt ?? ?? ? ? ?
?? ?? ? ? ?

??
T

T

pT

pT

p pi pi

pi

l

et

P

p

l

et

P

p

I

i

M

m

l

et

111
11 1 1

 350

R
qth DQR ? 90

N
qh NQ 3

Total 443

Next, consider the number of constraints. Table 3-4 outlines the number of each type of

constraint, where R
pQ is the average number of project-level renewable resources, N

pQ is the

average number of project-level nonrenewable resources, pO and pN are the average number of

standard and generalized precedence relationships, respectively, per project, and 0O and 0N

are the number of program-level standard and generalized precedence relationships, respectively.

There are a total of 232 constraints in the example problem.

Finally, consider the complexity of the MRCMPSP-GPR/EXP. This problem is a

generalization of the Resource-Constrained, Multi-Modal, Project Scheduling Problem

(RCMMPSP) which is known to be NP-Hard (Kolisch, 1995: 26). In addition, Sprecher and Drexl

state that if a RCMMPSP has more than one activity, just finding a feasible solution is an NP-hard

problem (Sprecher and Drexl, 1996a: 3).

In an effort to mitigate the computational difficulty of the MRCMPSP-GPR/EXP, this

dissertation develops a methodology for decomposing the original problem into smaller, more

tractable problems. One of the research issues addressed is the tradeoff between the time saved in

solving a number of smaller subproblems and the computation overhead associated with the

iterative process of the approach. Each of the smaller problems is still NP-Hard, but it is precisely

this fact which makes decomposition an appealing approach. Since the time to solve NP-Hard

problems grows very quickly as the size of the problem grows, reducing the size of a problem

should significantly reduce the time to solve it. If the time saved solving each of the smaller

problems is greater than the computational overhead, then the decomposition approach should be

applied when possible. Chapter VI addresses this research issue and provides results of testing of

the decomposition approach.

 3-24

Table 3-4. Number of Constraints

Constraint
Type

Number of Constraints Constraints in
Example Problem

(1) pIP ? 19

(2) and (3) op OPO ?? 24

(4) to (7) op NPN 22 ?? 2

(8) 1 1
(9) < P 0

(10)
p

R
p DQP ?? 0

(11)
p

R
p DQP ?? 0

(12) DQR ?0 90

(13) DQR ?0 90

(14) N
pQP ? 0

(15) N
pQP ? 0

(16) NQ0 3

(17) NQ0 3

Total 232

Decomposition of the MRCMPSP-GPR/EXP

The first step in decomposing the MRCMPSP-GPR/EXP is partitioning the constraints

between those which apply to individual projects and those which apply to the entire program. The

program-level constraints are (3), (6), (7), (8), (12), (13), (16), and (17), while the project-level

constraints are (1), (2), (4), (5), (9), (10), (11), (14), and (15). The problem with partitioned

constraints becomes:

Minimize

 ???? ?? ? ? ?
????? ?? ? ? ?

?????
D

Gt
Ttt

G

Ft
Ttt

Qq

N
q

N
q

Qq

D

t

R
qt

R
qt

Pp Ii Mm

D

t
pimtpimt xaxahchcxcz

NR
p pi 1

PenaltyBonus

00

 (20)

 3-25

Subject To

Program-Level Constraints

 0)(??? ? ?? ?
? ?? ? jp jppi pi Mm wt

jmtp
Mm wt

pimtpim txxdt , 0),(Ojppi ?? (3)

 0min ??? ? ?? ?
? ?? ? jp jppi pi Mm wt

jmtpij
Mm wt

pimt txtx ? , 0),(Njppi ?? (6)

 0max ???? ? ?? ?
? ?? ? jp jppi pi Mm wt

jmtpij
Mm wt

pimt txtx ? , 0),(Njppi ?? (7)

 Dtx
Twt

Tt ??
?

 (8)

 R
qt

Pp Ii Mm

t

dtt

R
qtpimt

R
pimq Rhxr

p pi pim

??? ? ? ?
? ? ? ???

*

* 1

,],0[*,0 DtQq R ??? (12)

 R
qt

R
qt Hh ? ,],0[,0 DtQq R ??? (13)

 N
q

N
q

Pp Ii Mm wt
pimt

N
pimq Rhxr

p pi pi

??? ? ? ?
? ? ? ?

, NQq 0?? (16)

 N
q

N
q Hh ? , NQq 0?? (17)

 3-26

Project-Level Constraints, p = 1, 2, 3,… , P

 x pimt
t wm M pipi ??
?? ? 1 , PpIi p ???? , (1)

 0)(??? ? ?? ?
? ?? ? pj pjpi pi Mm wt

pjmt
Mm wt

pimtpim txxdt , PpOji p ???? ,),((2)

 0min ??? ? ?? ?
? ?? ? pj pjpi pi Mm wt

pjmtij
Mm wt

pimt txtx ? , PpNji p ???? ,),((4)

 0max ???? ? ?? ?
? ?? ? pj pjpi pi Mm wt

pjmtij
Mm wt

pimt txtx ? , PpNji p ???? ,),((5)

 p
wt

tT Dtx
pT

p
??

?
, ? ?p P (9)

 R
qt

Ii Mm

t

dtt

R
qtpimt

R
pimq Rhxr

p pi pim

??? ? ?
? ? ???

*

* 1

, PpDEtQq pp
R
p ????],,[*, (10)

 R
qt

R
qt Hh ? , PpDEtQq pp

R
p ????],,[, (11)

 N
q

Ii Mm wt

N
qpimt

N
pimq Rhxr

p pi pi

??? ? ?
? ? ?

, PpQq N
p ??? , (14)

 N
q

N
q Hh ? , PpQq N

p ??? , (15)

Variable Bounds

 ? ?x pimt ? 0 1, , ? p i m t, , , (21)

 0?R
qth and integer, tq,? (22)

 0?N
qh and integer, q? (23)

 3-27

With this partitioning of constraints, the block-angular structure generally associated with

Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960) becomes apparent. Figure 3-4 depicts

this block-angular structure, where matrices Ap, p = 1, 2, ..., P+1, consist of the program-level

coefficients associated with project p, matrices Bp, p = 1, 2, ..., P+1, consist of the project-level

coefficients associated with project p, variables xp, p = 1, 2, ..., P+1, are the activity start time and

expediting resource variables, and constants cp, p = 1, 2, ..., P+1, are the objective function

coefficients associated with variable xp. Note that xp is a mixed vector of variables where some of

its elements are {0,1} and others are non-negative integers.

Original Problem

Problem (P): Minimize ?
?

?
?

1

1

P

p
ppz xc (24)

 Subject To

 11xA 22xA? ? ... PPxA? 11 ??? PP xA 0b? (25)

 11xB 1b? (26)

 22xB 2b?

 PPxB Pb?

 11 ?? PP xB 1?? Pb

? ?
?
?
?
?

?
 variablesresource expeditingfor integer and 0

 variablesstart timefor 1 0,
px , 11 ??? Pp (27)

where

pA represents the program-level constraint coefficients associated with project p,

pB represents the project-level constraint coefficients of project p,

p, Pp ??1 , are indices representing the P projects / subproblems, and

P + 1 is the index representing the program.

Figure 3-4. Block-Angular Structure

 3-28

Dantzig-Wolfe decomposition has proven valuable for linear programs with continuous

variables. Dantzig-Wolfe decomposition, however, is inappropriate for integer programming

problems, such as the MRCMPSP-GPR/EXP, because the master problem develops a solution by

finding an optimal affine combination of candidate solutions from the subproblems (extreme points

of the feasible region). In general, an affine combination of the candidate solutions from integer

subproblems is not guaranteed to be integer-valued.

Sweeney and Murphy (1979), however, developed a decomposition approach for integer

programs with such a block-angular structure. With Sweeney-Murphy decomposition, the

individual projects can be separated into blocks, or subproblems. Each subproblem is solved to

find a set of k-best solutions (in terms of objective function value) for that subproblem. These sets

of best subproblem solutions are iteratively passed up to the master problem until the master

problem identifies one solution from each subproblem (rather than an affine combination) which,

collectively, are feasible to the original problem and provide the best overall solution to the original

problem.

Solution Methodologies

The solution methodologies presented in this dissertation are motivated by the Sweeney-

Murphy decomposition approach. Methodologies are needed for solving both the decomposed

subproblems and the master problem. Additionally, a methodology for generating instances of the

MRCMPSP-GPR/EXP is required for testing the solution methodologies. This section presents an

overview of these methodologies.

Problem Generation. During a review of the literature, it was determined that no existing

problem generator is capable of generating all of the characteristics of the MRCMPSP-GPR/EXP.

Worse, most of the existing generators use the coefficient of network complexity (CNC) as their

measure of network complexity. The CNC, the ratio of arcs to nodes in the network, is easily

implemented in a problem generator, but has considerable shortcomings (detailed in Chapter IV).

Thesen (1977) developed an alternate measure of network complexity, the Thesen Restrictiveness

(RT), which is recognized as a much better measure. Still, only two generators (Schwindt, 1995,

1996 and Drexl et al., 1997)) attempt to use the RT. Unfortunately, both generators actually use

the CNC to add arcs to a project network and then simply calculate the RT of the resulting

 3-29

network. If the desired RT is met or exceeded, the generators stop. Unfortunately, the resulting

RT may be well beyond what the user intended.

The research presented in Chapter IV demonstrates a methodology for generating project

networks using the RT directly. In that way, researchers have control over the complexity of the

networks which underlie their experiments. With an RT-based project network as its core, the

generator developed in Chapter IV adds the additional characteristics required by the MRCMPSP-

GPR/EXP. Some of the methods presented by Kolisch et al. (1992, 1995) are used directly or

extended as necessary. Other features are added, such as an approach for converting standard

precedence relationships (those produced by the network generator) into generalized precedence

relationships.

Single Project / Subproblem Solution. The MRCMPSP-GPR/EXP can be solved directly as a

large, single-project problem or decomposed into a set of smaller, semi-independent subproblems

(themselves, single-project problems). Whichever approach is used, a methodology for solving

single-project instances of the MRCMPSP-GPR/EXP is required.

 Chapter V develops an implicit enumeration algorithm for solving single-project instances of

the MRCMPSP-GPR/EXP. The algorithm is based on a scheme by Talbot (1982) for the Multi-

Modal, Resource-Constrained Project Scheduling Problem (RCPSP). The scheme constructs

project schedules by adding one activity to the schedule at a time. First, a mode is selected for the

activity and, then, a start time. Feasibility tests are conducted at each step to fathom mode / start

time combinations which are infeasible. Bounding tests are also conducted to see if the growing

schedule is dominated by the best incumbent schedule. If the current mode / start time combination

is either infeasible or dominated, that branch of the search tree is fathomed and a new mode / start

time combination tried.

While Talbots’ scheme provides a solid method for enumerating over the possible project

schedules, it is extended for generalized precedence and expediting resources. It is also expanded

to generate a set of k-best solutions rather than a single optimal. Generation of a set of solutions is

explicitly required by the decomposition approach. Even if problem decomposition is not the goal,

however, these alternate solutions offer a decision-maker multiple options which can be evaluated

using non-objective function criteria (e.g., managerial preference for certain mode choices).

 3-30

Generation of the k-best solutions is made possible by fathoming branches of the search tree

using the current k-th best solution rather than the current optimal solution. If a solution is at least

as good as the k-th best, the solution is added to the set and the k-th best solution is dropped.

Decomposition / Master Problem Solution. During the solution methodology, each

subproblem is solved to find the k-best solutions for that subproblem. These sets of k-best

solutions are passed to a master problem (detailed in Chapter VI) which evaluates them, seeking to

find one candidate solution from each subproblem which, collectively, are both feasible and

optimal to the original problem. If these criteria are not met, additional solutions are generated by

the subproblems and passed to the master problem. This iterative process continues until a feasible

and optimal solution is found.

An algorithm for solving the master problem is developed in Chapter VI. The algorithm is an

implicit enumeration algorithm, similar to that used for solving the subproblems, except that a

subproblem solution is added at each level of the search tree rather than a single activity. Again,

feasibility and bounding tests are conducted in an attempt to fathom unproductive branches of the

tree as early as possible.

Also detailed in Chapter VI is a methodology for producing multipliers which form part of the

subproblem objective functions. These multipliers are developed to encourage the subproblems to

comply with program-level constraints. Theoretically, a good choice of multipliers will reduce the

number of solutions required from the subproblems. This assertion is tested in Chapter VI.

Summary

This chapter presented a mathematical formulation of the MRCMPSP-GPR/EXP, discussed

the size and complexity of the MRCMPSP-GPR/EXP, and showed how the MRCMPSP-

GPR/EXP might be decomposed. Additionally, three methodologies were overviewed: (1) problem

generation; (2) single project / subproblems solution; and, (3) decomposition / master problem

solution. The next three chapters discuss in much greater detail these methodologies.

 4-1

IV. Problem Generation

Overview

This dissertation addresses the Multi-Modal, Resource-Constrained, Multi-Project Scheduling

Problem with Generalized Precedence and Expediting Resources (MRCMPSP-GPR/EXP). This

problem and the solution methodologies presented in later chapters are part of a growing wealth of

problem formulations and solution methodologies which comprise the field of resource-constrained

project scheduling. Ferreira et al. (1998) point out that the need to validate, scope, and score an

ever-increasing number of competing algorithms and heuristics for scheduling projects under

resource constraints implies the extensive use of simulation to test them against large and

significant network testing sets. In view of this need, three widely used test sets have been

proposed over the years: those of Patterson (1984); of Alvarez-Valdez and Tamarit (1989); and of

Kolisch et al. (1995) and Kolisch and Sprecher (1996).

While standard test sets have proven their worth for many researchers, two conditions mitigate

their value over time:

1. They are inadequate for new problem types with characteristics not represented in the test
set.

2. Researchers have little or no control over the parameters used to develop the fixed test sets.

These parameters (such as the complexity of the network) can greatly influence the
difficulty of problem instances.

To expand on this point, consider Patterson’s (1984) test set of 110 problem instances to

compare four exact procedures for makespan minimization of the single-mode resource-constrained

project scheduling problem (RCPSP). Though this test set served as the benchmark for years,

Kolisch et al. (1992) suggest that these test problems were not generated using a controlled design

of specified parameters, consider only the single-mode and makespan-minimization cases, and have

been shown to be among the easier instances of such problems, even among single-mode problems.

For these reasons, Kolisch et al. argue that these problems should no longer be considered

benchmark instances.

To overcome the shortcomings of standard test sets, the development of methods to generate

project networks is a key condition in the scientific assessment of so many different procedures on

so many different problem types. Unfortunately, the number of published generators available in

the literature for resource-constrained project scheduling is limited (Ferreira et al., 1998:58). A

 4-2

review of the literature confirms this conclusion. Five recent publicly-accessible generators

(Demeulemeester et al., 1993; Kolisch et al., 1992, 1995; Schwindt, 1995, 1996; Drexl et al.,

1997; Agrawal et al., 1996) are reviewed below for this study. Their key features are summarized

in Table 4-7 at the end of this chapter.

Demeulemeester et al. (1993) stress the random generation of project networks. They argue

that many project scheduling procedures work well for certain network structures and poorly for

others. To properly evaluate competing scheduling procedures, networks should be generated from

among all feasible networks and not be limited to networks of some particular structure. In the

Demeulemeester et al. generator, referred to here as DDH, the number of nodes and arcs in the

network can be specified by the user or randomly drawn from a number of probability

distributions. Arcs are then added or deleted until the desired number of arcs is achieved. Activity

durations, the number of renewable resources (limited to three), resource requirements and

availabilities, and the events marking the project milestones are also randomly drawn from

precoded distributions.

While the philosophy used in the development of the DDH generator is a valid general

approach to generator design, it ignores the issue that a key aspect of a class of algorithmic designs

may be the exploitation of problem structure. To evaluate an algorithm designed specifically for a

target class of problems, a researcher requires a way to control the structure of the test problems.

This sentiment is echoed by Kolisch et al. (1992, 1995) who have developed a problem generator

which allows the user to set several project parameters. Some of these parameters were proposed

in the literature, while others were developed by Kolisch et al. Entitled ProGen, their project

generator includes single- and multi-mode activities, different categories of resources, and single-

and multi-project scheduling problems. ProGen has been used by a number of researchers in

recent studies, including De Reyck and Herroelen (1996), Icmeli and Erenguc (1996), Ahn and

Erenguc (1998), and Van Hove (1998). In some cases, however, these researchers have added

problem features of their own. Van Hove (1998), for instance, replaced the standard precedence

constraints generated by ProGen with generalized precedence constraints.

Working with ProGen as a base, two additional problem generators have been developed.

Schwindt (1996) extended ProGen (called ProGen/max) to incorporate minimal and maximal time

lags, as well as some additional problem parameters, such as the estimator of network

restrictiveness suggested by Thesen (1977). Drexl et al. (1997) extended ProGen to ProGen/ x? in

 4-3

order to incorporate new modeling extensions such as partially renewable resources, changeover

times, and mode and set of mode identity.

One final problem generator, DAGEN, was developed by Agrawal et al. (1996) to employ the

network complexity index introduced by Bein et al. (1992). The complexity index measures how

far a given network is from a series-parallel network. (The definition and significance of such a

network is described below in the subsection entitled Network Complexity.) Costs, duration, and

resource requirements associated with the activities are generated randomly from uniform

distributions.

While problem instances for a great number of problem classes can be generated using the

generators described above, none are capable of producing all of the characteristics of the

MRCMPSP-GPR/EXP. None of the generators are designed to generate (1) expediting resource

availabiliti es and costs, (2) mode costs which can be constant, increasing, or decreasing with time,

or (3) truly multi-project programs. While ProGen suggests the capability of generating multi-

project problems, these problems have no precedence relationships between activities of one project

and those of another (other than supersource and supersink dummy nodes which tie them together).

Furthermore, the resources generated by ProGen are program-level resources only, with no

consideration for project-specific resources.

This research develops a problem generator entitled PAGER (Program Attributes Generator

with Expediting Resources). It was designed to incorporate all of the characteristics of the

MRCMPSP-GPR/EXP. As a generalization of many other problem types, PAGER’s usefulness is

not limited to this sole class of problem. Problem instances for the traditional PERT/CPM

problem, the net present value problem, the job shop scheduling problem, the single- and multi-

modal, resource-constrained project scheduling problems, and others can be generated using

PAGER. The primary advantages of PAGER are fourfold:

1. It can generate not only single-project problem instances, but truly multi-project problem
instances, with interrelationships between projects, program-level (shared) resources, and
project-specific resources.

2. Parameters within a multi-project program can be set to independently structure each

project, as well as their interrelationships. This allows each project to have unique
characteristics. In ProGen, for instance, the number of activities in each project is drawn
from the same distribution, whereas in PAGER, the user may specify a distinct distribution
for each project.

 4-4

3. It allows certain parameters (fixed by the user in other generators) to be drawn from user-
defined uniform distributions. For example, in ProGen, resource strength (a measure of
resource scarceness) is, by construction, the same for each resource. In realistic problems,
it is reasonable to expect some resources to be scarcer than others. PAGER allows the
value of resource strength to differ (randomly) for each resource.

4. Some researchers may prefer certain problem-defining measures to others. This is

particularly true of measures of network complexity (e.g., Thesen, 1977; Kolisch et al.,
1992, 1995; De Reyck and Herroelen, 1996). PAGER allows users to select from among
two common measures of network complexity found in the literature, even allowing the
user to use measures of network complexity simultaneously. Generated problem instances,
then, reflect the user’s preferences. This flexibility also allows researchers to use a single
generator to produce problem sets to compare these competing measures.

 The remaining sections of this chapter proceed as follows:

1. PAGER: Problem Generator develops the procedure for generating problems step by step.

2. PAGER Implementation outlines the implementation of the PAGER program.

3. Summary and Conclusions gives some final remarks.

PAGER: Problem Generator

The generation of problems using PAGER can be subdivided into six steps. First, PAGER

reads a problem specification file, which contains all of the problem parameters. For each desired

problem instance, basic problem data is then generated, a problem network is developed, resource

demands and availabilities are determined, and problem cost data is generated. Finally, the

problem is output into any of three formats: ProGen format (depending on problem features),

PAGER format, or MPS format. Sample input and output files are found in Appendices B and C,

respectively. The six steps of problem generation are discussed in the following subsections.

Figure 4-1 depicts the overall flow of the problem generation algorithm.

Step 1 - Specification File Input. The specification file (illustrated in Appendix B) is a simple

text file through which the user may specify problem design preferences. These preferences are the

parameters used to generate basic problem data, the problem’s network structure, the resource

data, and the cost data.

 4-5

Generate Network

Generate Resource Data

Generate Cost Data

inst = inst + 1

inst = 1

Output Problem Instance

Read Specification File
(including number of
instances, MaxInst)

Generate Basic Data

Inst =
MaxInst?

Stop

No

Yes

Figure 4-1. Overall Flow of PAGER

Once the specification file is read by PAGER, problem generation continues by sequentially

performing Steps 2 through 6 for each problem instance desired. In the discussion which follows,

the notation used in ProGen is retained wherever possible. In addition, three commonly used

functions are defined as follows:

round(x) : rounds the value of x to the nearest integer

int(x) : truncates the value of x to the greatest integer x?

 4-6

rnd[a, b] : a uniformly-distributed pseudorandom number from the interval [a, b]

Pseudorandom numbers are constructed by transforming [0, 1] uniformly-distributed

pseudorandom numbers generated using Marsaglia’s Multiply-with-Carry (MWC) generator

(Wheeler, 1994). Marsaglia’s MWC generator is easy to implement and produces pseudorandom

number streams with an extremely long period -- about 2125 (Wheeler, 1994). ProGen uses the

random number generator developed by Schrage (1979) which has a period of 231.

Step 2 - Basic Data Generation. Basic problem data includes the number of activities in each

project, the number of modes for each activity, the program and project release dates, the program

and project due date factors, and the duration of each activity mode. This data is randomly

generated based on the parameters specified by the user through the problem specification file.

Parameters used in generating basic data are summarized in Table 4-1.

Table 4-1. Input Parameters for Basic Data

Parameter Definition Bounds

P number of projects (the program is treated as project p = 0) [1, 10]

maxmin / pp JJ min/max number of activities in project p [1, 99]

maxmin / pp MM min/max number of modes per activity in project p [1, 10]

maxmin / pp dd min/max duration of activities in project p [0, 999]

maxmin / pp ?? min/max release date of project p (including p = 0) [0, 999]

maxmin / pp ?? min/max due date factor of project p (including p = 0) [0.0, 1.0]

The procedures used to generate basic problem data (summarized in Table 4-2) are materially

the same as those used in ProGen. The difference is that ProGen uses the same lower and upper

bounds to generate this data for each project, while PAGER allows the user to specify different

bounds for each project. The advantage is that the user has greater flexibility in designing

programs. If, for example, the researcher is interested in investigating the impact of project

homogeneity on scheduling, he/she may generate and compare problems where the projects have

similar numbers of activities and activity durations versus problems where some projects have

many short activities and other projects have fewer, but longer, activities. On the other hand, the

 4-7

researcher may want to design a program where some projects have controllably early release dates

and other projects have controllably late release dates.

Table 4-2. Basic Data Variables

Parameter Definition

P number of projects (the program is treated as project p = 0)

pJ the number of activities in project p

piM the number of modes of project p, activity i

dpim the duration of project p, activity i, mode m

p? the release date of project p (including p = 0)

p? the due date factor of project p (including p = 0)

Using the parameters in Table 4-2, the following data is generated, where the program is

considered to be project p = 0.

a. Number of activities in project p, including the project source and sink.

? ?? ? 2, maxmin ?? ppp JJrndroundJ , Pp ,...,3,2,1?

b. Number of activities in the program, including the program supersource and supersink.

2
1

0 ?? ?
?

P

i
pJJ

c. Number of modes of project p, activity i.

? ?? ?maxmin , pppi MMrndroundM ? , Pp ,...,3,2,1?

d. Program/Project Release Dates.

? ?? ?maxmin , ppp rndround ??? ? , Pp ,...,2,1,0?

 4-8

e. Program/Project Due Date Factors. These are used later, in Step 3, to determine actual
program and project due dates.

? ?? ?maxmin , ppp rndround ??? ? , Pp ,...,2,1,0?

f. Activity/mode durations. These are generated using the following algorithm, where D is a
set of random integers and Dk is the kth element of D.

Activity Duration Algorithm

1. for p = 1, 2, 3, ..., P

2. for i = 1, 2, 3, ..., Jp

3. k := 1

4. while piMk ? do

begin

5. Dk := ? ?? ?maxmin , pp ddrndround

6. k := k + 1

end

7. m := 1

8. while piMm ? do

begin

9. d* := min(D)

10. k* := k such that *k
D = d*

11. dpim := d*

12. D := D\? ? *k
D

13. m := m + 1

end

 4-9

Step 3 - Network Generation. The objective of this step is to construct a connected, acyclic,

non-redundant network with the user-specified complexity measure(s). Before proceeding with a

description of how the network is constructed, each characteristic of the network is explained.

Generalized Precedence Relationships

In the traditional activity-on-node representation of project scheduling problems, network

nodes represent activities and directed network arcs (from the end of one activity to the beginning

of another) represent finish-start precedence relationships. When precedence relationships are

generated such that activity i precedes activity j only if i < j, the project network is acyclic.

Generalized precedence relationships (minimum and maximum time lags between the start times of

two activities), however, have typically been treated in the literature using backward arcs (e.g.,

from activity j to activity i), resulting in cyclic project networks (Schwindt, 1995, 1996; Drexl et

al., 1997; Salewski et al., 1997). Using this treatment, generalized precedence relationships are

created by generating cyclic project networks.

Since cyclic project networks can be intuitively confusing, PAGER uses a simplified approach

to create generalized precedence relationships. Graphically, a generalized precedence is

represented by a forward arc from the beginning of one activity to the beginning of another as in

Figure 4-2. Generalized precedences are created by converting traditional finish-start precedence

relationships. Recall that traditional finish-start precedence relationships are a special case of

generalized precedences where the minimum time lag equals the duration of the predecessor

activity and the maximum time lag is infinite. Generalized precedences are, therefore, created by

re-specifying the minimum and maximum time lags for a subset of the existing precedence

relations.

PAGER allows the user to specify a lower and upper bound for the minimum time lag and a

lower and upper bound for the maximum time lag. Minimum and maximum time lags may be

negative. For instance, if the minimum and maximum time lags from activity i to activity j are -3

and 5, respectively, and activity i starts at time t, then activity j may start anywhere in the interval

[t-3, t+5]. If the minimum and maximum time lags are both negative, the relationship is still valid

provided that the minimum time lag is less than or equal to the maximum time lag.

 4-10

Standard Precedence Generalized Precedence

Figure 4-2. Standard and Generalized Precedence Arcs

In the definitions which follow, arc set A is assumed to consist of standard precedences only.

This assumption can be made without loss of generality since, as stated above, generalized

precedences are treated as standard precedences with re-specified time lags.

Connected Network

The problem network must be connected.

Definition 4-1. Network Connectivity (Kolisch et al., 1992: 5)

Let G = (N, A) be a directed graph with node set N and arc set A. G is connected if, for

every node Nj ? , there is a directed path in G from the single source node to j and a

directed path in G from j to the single sink node.

Definition 4-2. Reachability (Schwindt, 1996: 7)

A node Nj ? is called reachable from node i if :

(i) j = i, or

(ii) there is a directed path Wij with origin i and terminus j.

Definition 4-3. Reachability Matrix of a Digraph (Schwindt, 1996: 7)

The reachability matrix R of digraph G = (N, A) is the nn ? matrix ? ?
Njiijr

?,
 with

?
?
??

otherwise ,0
 from reachable is if ,1 ij

rij .

 4-11

Definition 4-4. Network Connectivity (Alternate Definition)

Let G = (N, A) be a directed graph with reachability matrix R, source node s, and sink

node t. G is connected if, for every Nj ? , rsj = 1 and rjt = 1.

Acyclic Network

The network must be acyclic.

Definition 4-5. Strongly/Weakly Connected (Schwindt, 1996: 8)

Let G = (N, A) be a directed graph with reachability matrix R. Nodes i, Nj ? , ji ? , are

strongly connected if j is reachable from i (rij = 1) and i is reachable from j (rji = 1).

Nodes i and j are weakly connected if they are not strongly connected but are connected in

the corresponding undirected graph (rij + rji = 1)

Definition 4-6. Cyclic/Acyclic Network

Let G = (N, A) be a directed graph. G is cyclic if there exists any two nodes i, Nj ? ,

ji ? , such that i and j are strongly connected. Otherwise, G is acyclic.

Non-Redundant Network

The network will be non-redundant. Though redundancy within the network does not

invalidate the network, it does adversely affect the coefficient of network complexity (CNC). If the

CNC (the average number of arcs per node) is used in determining the structure of the problem

network, then redundant arcs cause an overstatement of the CNC and a network structure with

fewer real temporal relationships than believed. Practically speaking, redundant arcs may also

increase the number of temporal relationships which must be considered when scheduling the

resultant problem.

Definition 4-7. Redundant Arc (Schwindt, 1996: 9)

Let G = (N, A) be an acyclic digraph. An arc (i, j) is redundant if there exists a directed

path Wij in G – (i,j) with more than one arc.

 4-12

Remark 1. (Schwindt, 1996: 9)

Arc (i, j) is redundant if and only if 1?ijr for)}),{(\,(* jiANG ? with reachability

matrix *R .

Definition 4-8. Non-Redundant Network

Let G = (N, A) be an acyclic digraph. G is a non-redundant network if there are no

redundant arcs in G.

Relationships Between Projects

Just as activities within or between projects may be temporally related, projects themselves

may also be temporally related. Specifically, the source node of one project is, to some degree,

related to the (numerically) preceding project. The degree of this relationship is referred to as the

project lag.

The project lag is determined using the project lag coefficient, Lp, which can take any

continuous value in the range of [0, 1]. Consider three cases, represented in Figure 4-3.

a. Lp = 0. The start of project p+1 is not dependent on project p. Hence, the source node of
project p+1 is a successor of the program super-source node only. In Figure 4-3, the
project lag coefficient between projects 1 and 2 is zero.

b. Lp = 1. Project p+1 succeeds project p. This is the case where one project, p, must be
entirely completed before another project, p+1, begins. This might happen if the projects
are sequential stages in a process where the end of one project and beginning of the next
represents a milestone in the process. The source node of project p+1 is a successor of the
sink node of project p. Projects 3 and 4 in Figure 4-3 have a project lag coefficient of one.

c.)1 ,0(?pL . The start of project p+1 is dependent on the successful completion of some

phase of project p, say activity j of project p. Activity j of project p may, for instance, be
the final approval of some critical technology needed for project p+1. In Figure 4-3,
projects 2 and 3 demonstrate a project lag coefficient greater than zero but less than one.
The source node of project p+1 is a successor of activity j of project p.

The project lag coefficient is randomly generated using the following equation:

? ?maxmin , ppp LLrndL ? ,

 4-13

where min
pL and max

pL are the user-specified minimum and maximum values of Lp, respectively.

Once the project lag coefficient for project p has been generated, the activity in project p which will

precede the source node of project p+1 is determined by:

? ?)1(1 ??? pp JLroundj

 s t

Project 1

 s t

Project 2

 s t

Project 3

 s t

Project 4

 S T

 j

Figure 4-3. Project Lags

Network Complexity

Elmaghraby and Herroelen (1980) state that some measure of complexity in the project

network is required to (1) serve as a predictor of the processing time requirements for a particular

software package on a particular hardware platform and (2) enable proper comparisons between

competing algorithms. Three different measures of network complexity are used in the problem

generators discussed above: the coefficient of network complexity, the complexity index, and

Thesen's restrictiveness measure.

Demeulemeester et al. (1993) and Kolisch et al. (1992, 1995) use the coefficient of network

complexity (CNC) as their measure of network complexity. CNC, the ratio of arcs to nodes in the

 4-14

network, is easily implemented in a problem generator, but it has shortcomings. The measure is

not normalized to the interval [0, 1] and so does not reflect network complexity relative to the

number of network nodes. A CNC of 3, for example, has different implications for a network with

100 nodes than it does for a network with only 10 nodes. In the 100-node network, each node

immediately precedes only 3% of the network nodes, on average. In the 10-node network,

however, each node immediately precedes 30% of the network nodes, on average, which is far more

constrained than the 100-node network. To alleviate this problem, some authors have used the

order strength (e.g., Cooper, 1976) which is calculated by dividing the number of arcs by the

maximum number of possible arcs, n(n-1)/2. As Kolisch et al. (1992, 1995) suggest, though, the

maximum number of possible arcs includes redundant arcs and is far greater than a realistic

number of precedence relationships in a project network.

De Reyck and Herroelen (1996) study the impact of CNC on problem solution time compared

to a second measure, the complexity index (CI). CI, a measure of how near a network is to being

series-parallel, is defined as the number of node reductions (in concert with series and parallel

reductions) required to reduce a project network to a two-terminal network (see Valdes et al.,

1982; Bein et al., 1992). De Reyck and Herroelen conclude that CNC is a poor indicator of

problem difficulty and propose that CI is a superior measure. Agrawal et al. (1996) make the

same conclusion and use CI in their problem generator, DAGEN. One drawback of using CI is

that it requires the use of an activity-on-arc representation of the project network as opposed to the

activity-on-node representation.

A third measure of network complexity is Thesen's measure of restrictiveness (RT) (Thesen,

1977). RT measures the degree to which the number of possible activity sequences has been

restricted by the imposition of precedence constraints. Schwindt (1995, 1996), who uses RT in his

ProGen/max generator, perceives RT as a more intuitive measure than CI and conjectures that it

will play an even more important role than CI in predicting computational effort for resource-

constrained project scheduling problems. De Reyck (1995) conducted an extensive computational

study and confirmed Schwindt's conjecture. Drexl et al. (1997) also use RT as the measure of

complexity in their ProGen/? x generator.

While problem generators have typically relied on a single measure of network complexity,

PAGER provides two measures, CNC and RT. These can be used separately or simultaneously.

RT is the primary complexity measure used by PAGER because of its increasing acceptance as the

 4-15

best available measure, as well as its intuitive appeal. CNC is also provided as an option for three

reasons. It provides the user the ability to generate problem sets comparable to other problem sets

cited in the literature. It provides means to investigate the power of RT and CNC, used together, to

explain the solution time of problem instances. It may, perhaps, open the door for future research

in using simultaneous measures of network complexity.

Definition 4-9. Restrictiveness of a Graph (Thesen, 1977: 197)

Let G = (N, A) be an acyclic digraph with unique source node 1, unique sink node n = |N|,

and reachability matrix R. Let ? denote the number of possible permutations of the

sequence ? ?221 ,...,, ?niii of ? ? NnN ??? 2,...,1' such that if 0??? kjrkj . Then,

the restrictiveness of G is defined as
maxlog

log1P
?
??? , where)!2(max ??? n .

Remark 2. (Thesen, 1977: 197)

]1 ,0[P ? , P = 0 for parallel digraphs, and P = 1 for series digraphs.

While P may be an appropriate measure of network complexity, finding ? is a difficult

combinatorial problem (Schwindt, 1995). Consequently, Thesen developed and tested over 40

different indirect estimators of P and found RT to yield the lowest mean relative error with respect

to P.

Definition 4-10. Disjunctive Arc (Schwindt, 1996: 18)

Let G = (N, A) be an acyclic digraph with reachability matrix R. Disjunctive arcs are

imaginary, undirected arcs between pairs of nodes Nji ?, such that

 rij = rji = 0.

 4-16

Definition 4-11. Restrictiveness Estimator RT (Schwindt, 1996: 18)

Let G = (N, A) be an acyclic digraph with unique source node 1, unique sink node n = |N|,

and reachability matrix R. Let nd denote the number of disjunctive arcs in G and let

2
)3)(2(max ??? nnnd be the maximum number of possible disjunctive arcs in a weakly

connected digraph with node set N. Then, the restrictiveness estimator RT is defined as

)3)(2(

)1(62

)3)(2(

2)1(
11RT ,,

max ??

??
?

??

??
????

??
??

nn

nr

nn

rnn

n
n Nji

ij
Nji

ij

d

d .

Schwindt (1996) provides Theorem 4-1 (stated here without proof) describing the behavior of

RT.

Theorem 4-1. (Schwindt, 1996: 19)

(i)]1 ,0[RT ? .

(ii) RT = 0 for parallel digraphs.

(iii) RT = 1 for series digraphs.

(iv) The insertion of a non-redundant arc increases RT.

(v) The insertion of a redundant arc does not affect RT.

One of the unique features of PAGER is the role the reachability matrix R plays in generating

the problem network. While the exact procedure is reserved for the next subsection, the underlying

theory is developed here.

Recall that problem generators ProGen/max and ProGen/? x use RT as the measure of network

complexity. Both of these generators use the same procedure as ProGen for creating an acyclic,

connected network. Generally, they

1. determine the number of start and end nodes, connecting these to the source and sink
nodes, respectively,

2. determine a direct predecessor for each node which does not already have one,

3. determine a direct successor for each node which does not already have one, then

 4-17

4. add additional non-redundant arcs until the desired complexity is achieved.

This ProGen-based procedure is simple to implement and is very useful when CNC is the

measure of network complexity. CNC is easily controlled through this procedure since arcs are

added one by one, increasing CNC by exactly 1/n, and the procedure is simply terminated when the

desired CNC is reached.

When RT is incorporated into the above procedure, arcs are added until RT has been met or

exceeded. Unfortunately, the procedure lacks direct control over RT. Unlike CNC, the addition of

an arc does not, in general, increase RT by any predetermined amount. The effect of an arc

addition on RT must be determined after the fact. Consider the following example.

Figure 4-4(a) depicts a network with CNC = 12/10 = 1.2 and RT = 13/28 ? 0.464. If an arc

is added from node 2 to node 5, Figure 4-4(b), the CNC increases by 1/10 to 1.3 and the RT

increases by 1/28 to 0.5. If, on the other hand, with the addition of an arc from node 3 to node 4,

Figure 4-4(c), the CNC still increases by 1/10 to 1.3, but the RT jumps by 5/28 to 0.643. If the

desired RT is somewhere in the open interval between 0.5 and 0.643, it is unclear how the RT will

be achieved without a trial-and-error process of adding and removing arcs. Schwindt (1995, 1996)

adds arcs until the desired RT is met or exceeded and then stops. As demonstrated above, the

resulting RT may be materially beyond what the user intended.

PAGER's approach to generating problem networks is to work in the domain of the

reachability matrix R. If R can be manipulated directly and a corresponding network produced,

then RT can be precisely controlled. The development of a project network using reachability

matrix R requires Definitions 4-12 through 4-15 and Theorems 4-2 and 4-3. Unless otherwise

noted, these definitions and theorems are original to this research.

Definition 4-12. Restricted Reachability Matrix

Let G = (N, A) be an acyclic digraph with reachability matrix R. Then, the restricted

reachability matrix R is the nn ? matrix ? ?
Njiijr ?,

 with

?
?
? ?

?
otherwise ,0

 , from reachable is if ,1 jiij
rij .

That is, IRR ?? , where i is the nn ? identity matrix.

 4-18

1 10

3

2

5

4 7

6

8

9

(a)

1 10

3

2

5

4 7

6

8

9

1 10

3

2

5

4 7

6

8

9

 (b) (c)

Figure 4-4. CNC versus RT

Definition 4-13. Adjacency Matrix (Schwindt, 1996: 6)

Let G = (N, A) be an acyclic digraph. The adjacency matrix A of G is the nn ? matrix

? ?
Njiija

?,
 with

?
?
? ?

?
otherwise ,0

),(, precedes if ,1 Ajiji
aij .

 4-19

Theorem 4-2. R Uniquely Determines A

Theorem: Let G = (N, A) be an acyclic, non-redundant digraph with adjacency matrix A

and restricted reachability matrix R . R uniquely determines the adjacency

matrix A as follows: ? ?2RRA ??? , where ? operates on the elements of a

matrix X such that
?
?
? ?

?
otherwise ,0

1 if ,1
)(ij

ij

x
x? .

Proof: Let G = (N, A) be an acyclic, non-redundant digraph with adjacency matrix A

and restricted reachability matrix R . Assume, without loss of generality, that

nodes are labeled such that if 1?ijr , then i < j. Show that ? ?2
ijijij rra ???

for each node pair Nji ?, .

 Three cases exist for any node pair Nji ?, : (1) ji ? , (2) ji ? and aij = 1,

or (3) ji ? and aij = 0. Consider each case separately.

 Case 1. ji ?

 0??? ijrji by assumption and 00 ??? ijij ar . Then,

0

00

2

?

????

??

?

??
??

?

????

????

?

jik
ik

ijk
kj

jik
kjik

ijk
kjik

Nk
kjikij

rr

rrrr

rrr

 and so ? ? 02 ?ijr? . Therefore, ? ? 0000 2 ?????? ijijij rra ? .

 Case 2. ji ? and aij = 1

 11 ??? ijij ra . That is, ?? Aji),(j is reachable from i. Then,

 4-20

?
???
???

?

??

????

????

?

?

?????

???

?

jki
kjik

jk
ik

jki
kjik

ik
kj

jk
kjik

jki
kjik

ik
kjik

Nk
kjikij

rr

rrrr

rrrrrr

rrr

00

2

 Now, 12 ?? ?
?? jki

kjikij rrr if and only if there exists some k, i < k < j, such that

1?kjik rr . Assume such a k exists. Then, there exists a directed path, Wij,

from i to j in G with more than one arc. This is a contradiction, however,

since G is non-redundant and 1?ija . Thus, 02 ?ijr and ? ? 02 ?ijr? .

Therefore, ? ? 1011 2 ?????? ijijij rra ? .

 Case 3. ji ? and aij = 0

 Since 0?ija , two possibilities exist: (a) i does not reach j (rij = 0) and (b) i

reaches j (rij = 1). Consider both possibilities.

 (a) i does not reach j (rij = 0). Then,

?
???
???

?

??

????

????

?

?

?????

???

?

jki
kjik

jk
ik

jki
kjik

ik
kj

jk
kjik

jki
kjik

ik
kjik

Nk
kjikij

rr

rrrr

rrrrrr

rrr

00

2

 Now, 12 ?? ?
?? jki

kjikij rrr if and only if there exists some k, i < k < j, such that

1?kjik rr . Assume such a k exists. Then, there exists a directed path, Wij,

from i to j in G with more than one arc. This is a contradiction, however,

 4-21

since i does not reach j. Thus, 02 ?ijr and ? ? 02 ?ijr? . Therefore,

? ? 0000 2 ?????? ijijij rra ? .

 (b) i reaches j (rij = 1). Then,

?
???
???

?

??

????

????

?

?

?????

???

?

jki
kjik

jk
ik

jki
kjik

ik
kj

jk
kjik

jki
kjik

ik
kjik

Nk
kjikij

rr

rrrr

rrrrrr

rrr

00

2

 Now, 12 ?? ?
?? jki

kjikij rrr if and only if there exists some k, i < k < j, such that

1?kjik rr , or in other words, there exists a directed path, Wij, from i to j in G

with more than one arc. Since i does reach j, 12 ?ijr and ? ? 12 ?ijr? .

Therefore, ? ? 0110 2 ?????? ijijij rra ? .

 QED

Remark 3.

? ?
? ?
? ?
? ?
? ??

?
?

?
?
?

?

??
??
??
???

???

0 and 1 if ,1
1 and 1 if ,0
0 and 0 if ,0
1 and 0 if ,1

2

2

2

2

2

ijij

ijij

ijij

ijij

ijijij

rr
rr
rr
rr

rra

?
?
?
?

? , for Nji ?, .

Definition 4-14. r-Deletion

Let R be a restricted reachability matrix. The r-deletion of node pair (l, m), Nml ?, , is

the change from 1?lmr to 0?lmr in R .

 4-22

Definition 4-15. Feasible r-Deletion

Let 1R be a restricted reachability matrix. Let 2R be 1R after the r-deletion of some

node pair (l, m), Nml ?, . The r-deletion of node pair (l, m) is feasible if

? ?2
222 RRA ??? remains a proper adjacency matrix (that is, ? ? ij 2A = {0, 1} for all

Nji ?,).

Theorem 4-3. r-deletion Feasibility

Theorem: Let 1R be a restricted reachability matrix with corresponding adjacency

matrix A1. Let 2R be 1R after the r-deletion of some node pair (l, m),

Nml ?, . The r-deletion of node pair (l, m) is feasible if and only if

? ? 1 1 ?lmA .

Proof: Let 1R be a restricted reachability matrix with corresponding adjacency

matrix A1. Let (l, m) be some node pair, Nml ?, , such that ? ? lm 1R = 1.

Let 2R be the resulting matrix when ? ? lm 1R is changed from 1 to 0. The

proof demonstrates (i) the r-deletion of (l, m) is feasible if ? ? 1 1 ?lmA and (ii)

the r-deletion of (l, m) is NOT feasible if ? ? 0 1 ?lmA .

 (i) Show that ? ? ?? 1 1 lmA the r-deletion of (l, m) is feasible.

 Assume ? ? 1 1 ?lmA . The r-deletion of (l, m) ? ? ? 0 2 ?lmR .

 When li ? and mj ? , ? ? ? ? ijij 1 2 RR ? ,

? ? ? ? ? ? ? ? ? ? ? ?ij
Nk

kjik
Nk

kjikij
2
1

2
1

2
1

2
2

2
2

2
2 RRRRRR ??

??
??? , and

 4-23

? ? ? ? ? ?? ? ? ? ? ?? ? ? ?ijijijijijij 1
2
1 1

2
2 2 2 ARRRRA ????? ?? . This implies that

? ? ? ? ijij 1 2 AA ? remains feasible for li ? and mj ? .

 Now consider when i = l and mj ? .

? ? ? ?ljlj 1 2 RR ? and

? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ?

? ?lj

Nk
kjlk

mk
kjlkmjlm

mk
kjlk

mk
kjlk

mk
kjlk

mk
kjlkmjlm

mk
kjlk

Nk
kjlklj

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

0

R

RR

RRRRRR

RRRR

RRRRRR

RRR

?

?

???

???

???

?

?
??

??
??

?

?

??

??

??

?

 Therefore, ? ? ? ? ? ?? ? ? ? ? ?? ? ? ?ijijljljljlj 1
2
1 1

2
2 2 2 ARRRRA ????? ?? . If

? ? 0 1 ?ijA , then ? ? ? ?1 0 2 ,?ijA (see Remark 3) and if ? ? 1 1 ?ijA , then

? ? 1 2 ?ijA . This implies that ? ? ? ? ijij 1 2 AA ? remains feasible for li ? and

mj ? .

 Consider next when li ? and mj ? . The same argument used for the case

when li ? and mj ? holds here.

 Finally, consider when li ? and mj ? .

? ? 1 1 ?lmR , ? ? 0 2 ?lmR and

 4-24

? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ?

? ?lm

Nk
kmlk

mmlmlmll
mlk

kmlk

mlk
kjlk

mlk
kjlk

mmlmlmll
mlk

kmlk

Nk
kmlklm

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

1010

0000

R

RR

RRRRRR

RR

RR

RRRRRR

RRR

?

?

???

?????

?????

???

?

?
?
?
?
?
?

?

?

?

?

?

?

,

,

,

,

 Since ? ? ? ? ? ?? ? 1
2
1 1 1 ??? lmlmlm RRA ? and ? ? 1 1 ?lmR ,

? ?? ? ? ?? ? 0 0
2
2

2
1 ??? lmlm RR ?? . Therefore,

? ? ? ? ? ?? ? 000
2
2 2 2 ????? lmlmlm RRA ? which, of course, is feasible and

expected.

 (ii) Show that ? ? ?? 0 1 lmA the r-deletion of (l, m) is NOT feasible.

 Assume ? ? 0 1 ?lmA . The r-deletion of (l, m) ? ? ? 0 2 ?lmR .

 Consider ? ? ? ? ? ?? ? ? ?? ? ? ?? ?lmlmlmlmlm
2
2

2
2

2
2 2 2 0 RRRRA ??? ?????? .

 As shown above, ? ?? ? ? ?? ? ? ? ? ? 101 1 1
2
1

2
2 ?????? lmlmlmlm ARRR ?? which

implies that ? ? ? ?? ? 1
2
2 2 ???? lmlm RA ? which is not feasible.

 QED

Network Generation Procedure

With the above definitions and theorems, it is now possible to construct a project network with

precise control over RT. This is done by starting with a restricted reachability matrix R where

 4-25

1?ijr for all Nji ?, , i < j, calculating ? ?2RRA ??? , randomly choosing a node pair (l, m),

nml ???1 , such that 1?lma , and r-deleting node pair (l, m). This procedure, depicted in

Figure 4-5, is repeated until the desired RT and CNC are obtained. Note that r-deletion is limited

to (l, m) where nml ?? ,1 . This is done because network connectivity is maintained, by

definition, when 11 ?jr for all j = 2,..., n and 1?inr for all i = 1,..., n-1.

Table 4-3 lists the input parameters required for generation of a project network. The use of

these parameters is detailed below.

Table 4-3. Input Parameters for Project Network Generation

Parameter Definition Bounds

max
1

min
1 / pp SS minimum/maximum number of start activities in project p [1, 99]

maxmin / pJpJ PP minimum/maximum number of finish activities in project p [1, 99]

max
pS max number of successors per activity for project p [1, 99]

max
pP max number of predecessors per activity for project p [1, 99]

LFp fraction of arcs in project p which denote generalized prec [0.0, 1.0]

maxmin / pp LLLL lower/upper bounds on the minimum lag times for project p [-99, 99]

maxmin / pp LULU lower/upper bounds on the maximum lag times for project p [-99, 99]

CNCp coeff. of network complexity (arcs per node) for project p [0, 999]

tolCNC tolerance on coefficient of network complexity [0.0, 1.0]

THp Thesen Restrictiveness measure for project p [0.0, 1.0]

tolTH tolerance on Thesen Restrictiveness [0.0, 1.0]

 4-26

Tries = Tries + 1

r-reduce random
node pair (l, m).

Update A.

Stop

CNC in
bounds?

Yes

Stop
Tries <

MaxTries?

No

RT too
high?

RT too
low?

No

Yes

No

Network
feasible?

Yes

Save Network

No

Given Constant:
 MaxTries

Calculate RT and CNC

Initialize R
Calculate A

Tries = 1

Yes

SUCCESS!

Yes

No

FAILURE!

Figure 4-5. Generation of a Project Network

Figure 4-6 illustrates the project network generation procedure. The lighter gray cells of

matrix R correspond to entries of R which cannot be changed. The darker gray cells are those

which can be changed to generate a project network of some desired RT. If the desired RT is 0.39,

the illustrated example yields an acyclic, non-redundant, connected digraph (network) with RT =

0.39.

 4-27

 R 2R A

Initialization
RT = 1
Series Graph

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1 1
6 1 1 1 1
7 1 1 1
8 1 1
9 1

10

1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8
2 1 2 3 4 5 6 7
3 1 2 3 4 5 6
4 1 2 3 4 5
5 1 2 3 4
6 1 2 3
7 1 2
8 1
9

10

1 2 3 4 5 6 7 8 9 10
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1

10

Iteration 1
r-delete (5, 6)
RT = 0.96

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1
6 1 1 1 1
7 1 1 1
8 1 1
9 1

10

1 2 3 4 5 6 7 8 9 10
1 1 2 3 3 5 6 7 8
2 1 2 2 4 5 6 7
3 1 1 3 4 5 6
4 2 3 4 5
5 1 2 3
6 1 2 3
7 1 2
8 1
9

10

1 2 3 4 5 6 7 8 9 10
1 1
2 1
3 1
4 1 1
5 1
6 1
7 1
8 1
9 1

10

Iteration 2
r-delete (7, 8)
RT = 0.93

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1
6 1 1 1 1
7 1 1
8 1 1
9 1

10

1 2 3 4 5 6 7 8 9 10
1 1 2 3 3 5 5 7 8
2 1 2 2 4 4 6 7
3 1 1 3 3 5 6
4 2 2 4 5
5 2 3
6 2 3
7 1
8 1
9

10

1 2 3 4 5 6 7 8 9 10
1 1
2 1
3 1
4 1 1
5 1 1
6 1 1
7 1
8 1
9 1

10

and finally,

Iteration 17
r-delete (2, 9)
RT = 0.39

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1 1 1
5 1 1
6 1 1
7 1 1
8 1
9 1

10

1 2 3 4 5 6 7 8 9 10
1 1 2 1 5 2 8
2 1 2
3 1 2
4 1 1 4
5 1
6 1
7 1
8
9

10

1 2 3 4 5 6 7 8 9 10
1 1 1 1
2 1
3 1
4 1 1
5 1
6 1
7 1
8 1
9 1

10

This yields the following project network:

1 3

4

2

6

7

5

9

8

10

Figure 4-6. Generating a Project Network

Note that at the initialization phase of the network generation procedure when RT = 1, the

network reflected in adjacency matrix A is precisely a series network. If the procedure continues

until RT = 0, the resulting matrices (Figure 4-7) produce a parallel graph.

 4-28

 R 2R A

Iteration 28
RT = 0
Parallel Graph

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1

10

1 2 3 4 5 6 7 8 9 10
1 8
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1

10

Figure 4-7. Generating a Parallel Project Network

During the generation of a project network, there are a few other feasibility rules which must

be observed. The user has previously set lower and upper bounds for the number of start nodes

and the number of end nodes, as well as upper bounds for the number of predecessors and

successors a node may have (see Table 4-3). Additionally, to preserve the ordering of nodes, the

start nodes must begin with node 2 and be consecutively numbered. The end nodes must, also, be

consecutively numbered and end with node n-1. Therefore, once an arc is r-deleted, a check is

made to assure that the above feasibility conditions are satisfied. If they are not, the arc is re-

inserted and a new arc chosen for r-deletion. If a feasible network cannot be found within a limited

number of trials, the program is halted with an error. The inability to generate a network within

the limited number of trials is likely attributable to inconsistent user-defined parameters. For

instance, there may be no feasible network for which the specified RT and CNC values can be

simultaneously met. The user may then reset the specifications and start over.

To construct a problem with multiple projects, a separate network is generated for each project

and then inter-project relationships are introduced. The first inter-project relationships to be

introduced are the previously described inter-project lags. The addition of inter-project lags yields

a multi-project program with a unique network for each project plus arcs to tie the projects to each

other and to the super-source and super-sink nodes. The next step is to add additional arcs to

achieve the user-specified values for the program-level RT and CNC.

The procedure for adding program-level arcs is similar to that used for generating project

networks with two exceptions. First, inter-project arcs may not only pass from some project p1 to

another project p2, but may also pass from project p2 to project p1. To allow arcs to originate in

any project and terminate in any other project, it is possible to initialize the program-level

reachability matrix, 0R , by arranging the reachability matrices, pR , from each project p in block

 4-29

angular form. The intersections of these blocks correspond to the reachability of nodes in one

project from nodes in another project. Figure 4-8 illustrates what 0R might look like for a

program with three projects and a program-level RT of 0.5. The white blocks correspond to the

project reachability matrices while the gray blocks are their intersections. Unfortunately, there is

no easy way to control the program-level RT with this arrangement. The intersections between

project blocks could be initialized with zero entries and then ones added until the desired RT is

achieved. This equates, however, to the problem experienced with single projects where feasible

additions to the reachability matrix must correspond to arcs in the adjacency matrix. There is little

control over RT this way.

 0R A0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1
5 1 1 1 1 1
6 1 1
7 1
8 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1
12 1 1
13 1
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1
17 1 1
18 1 1
19 1
20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1
2 1
3 1 1 1 1 1
4 1 1
5 1 1
6 1
7 1
8 1 1
9 1 1 1 1

10 1 1
11 1 1 1
12 1
13 1
14 1
15 1 1 1
16 1 1
17 1
18 1
19 1
20

Figure 4-8. Example of Multi-Project Program

An alternate way is to initialize the intersections between project blocks with ones and then r-

delete node pairs corresponding to arcs in the adjacency matrix. The downside to this method,

though, is that the initial reachability matrix (Figure 4-9) is overspecified (i.e., it has an RT = 2.0)

and the adjacency matrix is infeasible (i.e., it has non-zero/one entries). Randomly selected node

pairs would then need to be r-deleted until A0 is feasible and then additional node pairs r-deleted

until the desired RT is obtained. The problem, again, is that if RT is large (close to one), it may be

difficult to bring A0 into feasibility before the actual RT descends below the desired RT.

 4-30

 0R A0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1 1 1 1 1
20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1
2 -1
3 -1 -1
4 -1 -1 -1 -1
5 -1 -1 -1 -1
6 -1 -1 -1 -1 -1
7 -1 -1 -1 -1 -1 -1
8 -1
9 -1 -1 -1

10 -1 -1 -1
11 -1 -1 -1 -1 -1
12 -1 -1 -1 -1 -1
13 -1 -1 -1 -1 -1 -1
14 -1
15 -1 -1
16 -1 -1 -1 -1
17 -1 -1 -1 -1 -1
18 -1 -1 -1 -1 -1
19 -1 -1 -1 -1 -1 -1
20

Figure 4-9. Initializing 0R with Ones

To overcome the problem of generating the program-level network structure, recall that a

multiple-project program can be viewed as a single super-project. Like any project, the nodes of a

super-project can be numbered in a way such that if node i precedes node j, then i < j. With this in

mind, the procedure used by PAGER is to randomly intermix and renumber the nodes of the

projects such that nodes from the same project retain their relative ordering within the super-project

and such that the predetermined inter-project lags retain their relative ordering within the super-

project. A reachability matrix identical to the ones used for the projects can then be constructed

(Figure 4-10) and node pairs r-deleted until the desired program-level RT is obtained.

 0R A0

1 8 14 2 9 10 15 3 4 5 16 11 17 6 18 19 12 7 13 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1

16 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1

6 1 1 1 1 1 1
18 1 1 1 1 1
19 1 1 1 1
12 1 1 1

7 1 1
13 1
20

1 8 14 2 9 10 15 3 4 5 16 11 17 6 18 19 12 7 13 20
1 1
8 1

14 1
2 1
9 1

10 1
15 1
3 1
4 1
5 1

16 1
11 1
17 1
6 1

18 1
19 1
12 1
7 1

13 1
20

Figure 4-10. Initializing 0R with Mixed Project Nodes

The second exception which makes program-level network generation different from project-

level network generation is that the current project networks and inter-project lags must be

 4-31

maintained. Maintenance of the current structures is assured through the MASK matrix. The

MASK matrix is, in essence, the reachability matrix corresponding to the current network

structures when viewed as a super-project. The MASK matrix is obtained by finding the shortest

path from every super-project node to every other super-project node. If the shortest path from one

node to another is finite, then the latter node is reachable from the former and the MASK matrix

receives a unit entry corresponding to that node pair. When randomly selecting a node pair to r-

delete, not only must the node pair correspond to an arc in the adjacency matrix, but the node pair

must also have a zero entry in the MASK matrix.

As with the project networks, node pairs are r-deleted until the program-level RT and CNC are

obtained. It is possible for there to exist inconsistencies in the user-defined specifications (Table

4-4). In particular, the inter-project lags and RT may be inconsistent. If the user, for example, has

specified a lag of one between each project, the resultant program-level RT will be one. If the user

has specified an RT less than one, the r-deletion of node pairs will terminate before the desired RT

is obtained. In this case, the program will save the current network with a warning that the

specified RT could not be satisfied. (That is, the algorithm is programmed so inter-projects lags

take priority over the RT.)

Table 4-4. Input Parameters for Inter-Project Network Generation

Parameter Definition Bounds

maxmin / pp LL min/max lag between projects p and p+1, p = 1, 2, 3, ..., P-1 [0.0, 1.0]

max
0S maximum inter-project successors per activity [1, 99]

max
0P maximum inter-project predecessors per activity [1, 99]

LF0 fraction of inter-project arcs which denote generalized prec [0.0, 1.0]

max
0

min
0 / LLLL lower/upper bounds on the minimum inter-project lag times [-99, 99]

max
0

min
0 / LULU lower/upper bounds on the maximum inter-project lag times [-99, 99]

CNC0 program-level coeff. of network complexity (arcs per node) [0, 999]

TH0 program-level Thesen Restrictiveness measure [0.0, 1.0]

Once the project networks and the program-level network have been generated, a fraction of

the project-level and program-level arcs are randomly chosen to be converted into generalized

 4-32

precedence relationships. The user has already specified (through the specification file) the

fraction of project-level and program-level arcs which will be converted. The randomly chosen

subset of arcs are added to the LAG matrix and are given minimum and maximum lag times. The

minimum and maximum lag time, LL and LU, respectively, for each lag relationship are

determined using the following equations:

? ?? ?maxmin , pp LLLLrndroundLL ?

? ?? ?maxmin , pp LULUrndroundLU ? .

After the conversion of a subset of arcs to lag relationships is complete, the remaining arcs are

added to the matrices of activity successors (SUCC) and predecessors (PRED). If the lag

conversion leaves an activity without a successor, an arc is added from the activity to the sink node

of the respective project. This assures that the activity must be completed before the project is

completed. Similarly, if an activity is left without a predecessor, an arc is added from the source

node to the activity to assure that the activity does not start before the project does.

Next, the program horizon is calculated. This is done simply by adding the duration of the

longest-duration mode of each activity. The program horizon represents the minimum amount of

time required to complete the program if resources are constrained to a point where only one

activity can be scheduled at a time and in its longest-duration mode.

Early and late start times of each activity are also calculated in the network portion of

PAGER. Early and late start times are calculated using the shortest-duration modes of each

activity as explained in Chapter III. The Generalized Critical Path Method (GCPM), introduced in

Chapter III, is used to determine the early and late start times with modifications to account for

generalized precedence. The GCPM algorithm, as outlined in Chapter III, is repeated below.

Generalized Critical Path Method (GCPM)

1. Set the early start time of each activity equal to the release date of the project of which it is
a member.

2. For each activity i, in numerical order, change its early start time to the greatest of the

following:

a. its current early start time,
b. the early start time plus duration of each of its standard predecessors, and

 4-33

c. the early start time of activity j plus minimum time lag between activity j and activity
i, for each activity j which is a generalized predecessor of activity i.

3. If the early start time of any activity changed at Step 2, repeat Step 2.

4. For each activity i, in numerical order, check each activity for which activity i is a

generalized predecessor. If the early start time of any generalized successor of activity i is
greater than the early start time of activity i plus the maximum time lag, change the early
start time of activity i to the greatest of the early start time minus maximum time lag of
each generalized successor of activity i.

5. If the early start time of any activity changed at Step 4, repeat Step 2. If not, the early

start time of each activity has been found.

6. Set the late start time of each activity equal to the program horizon minus its duration.

7. For each activity i, in reverse numerical order, change its late start time to the least of the

following:

a. its current late start time,
b. the late start time of each of its standard successors minus the duration of activity i,
c. the late start time of each activity generalized successor of activity i minus its

minimum time lag from activity i.

8. If the late start time of any activity changed at Step 7, repeat Step 7.

9. For each activity i, in reverse numerical order, check each activity which is a generalized

predecessor of activity i. If the late start time of activity i is greater than the late start time
of any generalized predecessor plus its maximum lag time, change the late start time of
activity i to the least of the late start times plus maximum time lag of each generalized
predecessor of activity i.

10. If the late start time of any activity changed at Step 9, repeat Step 7. If not, the late start

time of each activity has been found.

While the GCPM is, in principle, fairly straightforward, implementation of the algorithm is

considerably more complex. To understand the implementation, consider, first, Definitions 4-16

and 4-17.

As an example, suppose that Activities 2 and 3 (in some project) have a generalized precedence

relationship and that Activities 3 and 5 (in the same project) also have a generalized precedence

relationship. Using the PAGER convention, the lower numbered activity is said to be the

generalized predecessor and the higher numbered activity is said to be the generalized successor.

Thus, Activity 2 has one generalized successor, Activity 3. Activity 3 also has one generalized

 4-34

successor, Activity 5. If the set, Ni, contains the explicit generalized successors of activity i, then

the problem statement would specify the following sets: N2 = {3} and N3 = {5}.

Definition 4-16. Explicit Generalized Precedence

Explicit Generalized Precedence is used to describe a generalized precedence relationship

explicitly specified in the problem statement. The set, Ni, contains the explicit generalized

successors of activity i.

Definition 4-17. Implied Generalized Precedence

Implied generalized precedence is used to describe a generalized precedence relationship

which is either explicitly or not explicitly specified in the problem statement. The set, *
iN ,

contains the implicit generalized successors of activity i.

Continuing the example above, the problem statement explicitly specified N2 = {3} and N3 =

{5}. The PAGER convention specifying the higher numbered activity as the generalized successor

of the lower numbered activity is used solely to avoid defining generalized precedence relationships

twice in the problem statement. It should be recognized, though, that if Activity 3 is a generalized

successor of Activity 2, then Activity 2 is also a generalized successor of Activity 3. Of course,

the minimal and maximal time lags are different, but they, too, are related. The following

relationships hold for any two activities (i and j) with a generalized precedence relationship:
* ji NiNj ???

maxmin
ijji ????

minmax
ijji ????

In the case of Activities 2 and 3, suppose 2min
23 ?? and 5max

23 ?? . That is, if Activity 2 starts

at time t, then Activity 3 must start in the interval [t+2, t+5]. This is equivalent, though, to saying

that if Activity 3 starts at time s, then Activity 2 must start in the interval [s-5, s-2]. In other

words, 5min
32 ??? and 2max

32 ??? . Therefore, while the problem statement (using the PAGER

convention) would explicitly specify that N2 = {3}, it is implied that *
32 N? .

 4-35

Though the discussion of explicit and implicit generalized precedences may appear academic,

it is important to the GCPM to identify all generalized precedence relationships. To account for

the unspecified relationships, set *
iN is defined as the union of Ni (the explicit generalized

precedence relationships of activity i) and the implicit generalized precedence relationships of

activity i. It has been discussed that if N2 = {3}, then *
32 N? . It also holds that if N3 = {5}, then

*
53 N? . Somewhat less obvious is that there is also a generalized precedence relationship between

activities 2 and 5, where *
52 N? and *

25 N? . Once all of the relationships have been identified,

the following sets are defined: ? ?5 32 ,* ?N , ? ?5 23 ,* ?N , and ? ?3 25 ,* ?N . The first task of the

GCPM is to define all of the implicit generalized precedence sets.

Notation for Generalized Critical Path Method

Activity Sets:

 AE = the set of activities which are eligible for labeling and have no generalized precedence

relationship

 AL = the set of activities which are eligible for labeling and have a generalized precedence

relationship

 AS = the set of activities which have been labeled

 A1 = a set of activities where each activity is a generalized predecessor of every other

activity in the set

 Oi = the set of activities which precede activity i

 Si = the set of activities which succeed activity i

 Ni = the set of explicit generalized successors of activity i

 *
iN = the set of implicit generalized successors of activity i

Time-Related Parameters:

 ? = the program release date

 D = the program planning horizon

 ei = the early start time of activity p(i)

 li = the late start time of activity p(i)

 imd = the duration of activity i in mode m

 4-36

 min
ij? = the minimal start-start lag time between activities i and j

 max
ij? = the maximal start-start lag time between activities i and j

Generalized Critical Path Method

Step 1 Set i = 0.

Step 2 Set i = i + 1. If Ji ? , go to Step 6. [For each activity i = 1 to J, do the following...]

Step 3 If ??iN , go to Step 2. [If activity i has no explicit generalized successors, proceed

to the next activity.]

Step 4 Let ii NN ?* . Set j = 1. [Activity i has at least one explicit generalized successor.]

Step 5 Let ? ? ? ?iNNN
jiNii *

** ? , where ? ? jiN* is the j-th element of set *
iN . Set

? ? ? ?
minminmin

kNNiik
jiji

** ????? and ? ? ? ?
maxminmax

kNNiik
jiji

** ????? for each ? ? jiNk *? . Set j = j +

1. If ? ? ??jiN* , go to Step 2. Otherwise, repeat Step 5.

Step 6 Set the early start time, ei, of each activity equal to the project release date, ? . That

is,
?
?
?

??
?

?
0 if1
0 if

1

1

i

i
i d

d
e

?
?

, for i = 1, 2, 3, … , J.

Step 7 Let AS = ? , AE = {1}, and AL = ? .

Step 8 Select the lowest indexed activity, say activity i, where

? ?*
i

LLE NjAjAAi ???? , .

 4-37

Step 9 For each activity ? ? *
iNij ? , set the early start time of activity j to the greater of its

current early start time and the early start time plus duration of each of its

predecessors. That is,

? ? ? ?

? ? ? ?
?
?
?

?

?
?
?

?

?

?
??

?
?
?

??

?
?
?

??

?
??

?
?
?

??

?
?
?

??

?

?
?

?
?

?
?

?
?

0 ifmax,1max,max

0 if1max,max,max

1

0

1

0

1

0

1

0

11

11

jk

d
Ok

kk

d
Ok

j

jk

d
Okkk

d
Okj

j

dedee

dedee

e

k

j

k

j

k

j

k

j

.

Step 10 If EAi ? , let ? ?iAA SS ? , ? ?? ? ? ?????? *,,\ j
S

ji
EE NAOSjjiAA , and

? ?????? j
S

ji
LL NAOSjjAA ,, . If ? ? ??LE AA , go to Step 8.

Step 11 Given ? ?*
i

LL NjAjAi ???? , , set ? ? *
iNiA ?1 .

Step 12 For each 1Ai ? , in turn, set

? ? ? ?

? ? ? ?
?
?
?

?

??
?

?

?

?
??

?
?
?

??

?
?
?

?????

?
??

?
?
?

??

?
?
?

?????

?

?
?

?
?

?
?

?
?

0 ifmax1maxmax

0 if1maxmaxmax

1
max

0

max

0

1
max

0

max

0

11

11

iijj

d
Nj

ijj

d
Nj

i

iijj

d
Nj

ijj

d
Nj

i

i

deee

deee

e

j
i

j
i

j
i

j
i

**

**

,,

,,

 and

? ? ? ?
? ? ? ??

?
?

??
?

?

?
??
?

??
? ?????

?
??
?

??
? ?????

?

??

??

0 ifmax,1max,max

0 if1max,max,max

1
min

0

min

0

1
min

0

min

0

11

11

jijidijidj

jiji
d

iji
d

j

j
deee

deee
e

ii

ii , *
iNj ?? .

Step 13 Let 1AAA SS ? , ? ??????? *,, j
S

ji
EE NAOAiSjjAA 1for , and

? ? ? ??????? j
S

ji
LL NAOAiSjjAAA ,,\ 11 for . If ? ? ??LE AA , go to

Step 8.

Step 14 Renumber activities from earliest start time to latest start time (break ties by index).

 4-38

Step 15 Set the late start time, li, of each activity equal to one time unit more that the project

horizon, D, less its duration. That is,
?
?
?

?
???

?
0 if
0 if1

1

11

i

ii
i dD

ddD
l , for i = 1, 2, 3, … , J.

Step 16 Let AS = ? , AE = {J}, and AL = ? .

Step 17 Select the highest indexed activity, say activity i, where

? ?*
i

LLE NjAjAAi ???? , .

Step 18 For each activity ? ? *
iNij ? , set the late start time of activity j to the lesser of its

current late start time and the late start time of each of its successors less the duration

of activity j. That is,

? ? ? ?

? ? ? ?
?
?
?

?

?
?
?

?

?

?
??

?
?
?

??

?
?
?

?

?
??

?
?
?

??

?
?
?

???

?

?
?

?
?

?
?

?
?

0 ifmin,1min,min

0 if1min,min,min

1

00

11

0

1

0

11

11

jk

d
Skk

d
Skj

jjk

d
Skjk

d
Skj

j

dlll

ddldll

l

k

j

k

j

k

j

k

j

.

Step 19 If EAi ? , let ? ?iAA SS ? , ? ?? ? ? ?????? *,,\ j
S

ji
EE NASOjjiAA , and

? ?????? j
S

ji
LL NASOjjAA ,, . If ? ? ??LE AA , go to Step 17.

Step 20 Given ? ?*
i

LL NjAjAi ???? , , set ? ? *
iNiA ?1 .

Step 21 For each 1Ai ? , in turn, set

? ? ? ?

? ? ? ?
?
?
?

?

??
?

?

?

?
??

?
?
?

??

?
?
?

?????

?
??

?
?
?

??

?
?
?

?????

?

?
?

?
?

?
?

?
?

0 ifmin1minmin

0 if1minminmin

1
min

0

min

0

1
min

0

min

0

11

11

iijj

d
Nj

ijj

d
Nj

i

iijj

d
Nj

ijj

d
Nj

i

i

dlll

dlll

l

j
i

j
i

j
i

j
i

**

**

,,

,,

 and

? ? ? ?
? ? ? ????

??
?

?

?
??
?

??
? ?????

?
??
?

??
? ?????

?

??

??

0 ifmin,1min,min

0 if1min,min,min

1
max

0

max

0

1
max

0

max

0

11

11

jijidijidj

jijidijidj

j
dlll

dlll
l

ii

ii , *
iNj ?? .

 4-39

Step 22 Let 1AAA SS ? , ? ??????? *,, j
S

ji
EE NASAiOjjAA 1for , and

? ? ? ??????? j
S

ji
LL NASAiOjjAAA ,,\ 11 for . If ? ? ??LE AA , go to

Step 17.

Steps 1 through 5 determine all of the implicit generalized precedence relationships of each

activity. As the algorithm labels activities, it does so by labeling activities without any generalized

precedence relationships one at a time (as in traditional CPM), and by labeling activities with

generalized precedence relationships as a set. The algorithm, therefore, collects the activities with

generalized precedence relationships and holds them until all such related activities are eligible for

labeling based on having all of their predecessors labeled. When these sets of activities are labeled,

all of the interrelationships must be known; hence, Steps 1 to 5.

The rules for scheduling zero-duration activities differ slightly from those with positive

duration. If the predecessor of a zero-duration activity finishes at time t0, then the earliest the zero-

duration activity may start is t0 rather than t0 + 1. The relationship of these activities may be seen

in Figure 4-11, where the precedence relationships of activities i through i+3 are shown and where

activities i+1 and i+2 have zero duration.

i+1i i+2 i+3

Activ ity Duration

i 4

i +1 0

i +2 0

i +3 3

Figure 4-11. Precedence-Feasible Early Start Times of Zero-Duration Activities

Steps 6 through 13 perform the early start time labeling. Each activity is first labeled to start

at the project release date (Step 6), then adjusted to start as soon as all of its predecessors have

finished (Step 9). For activities with no generalized precedence relationships, Step 10 updates the

 4-40

activity sets and labeling recommences with the next eligible activity in Step 8. For activities with

generalized precedence relationships, Step 11 forms the set of all activities which are, in essence,

being labeled simultaneously. In Step 12, the early start time of each activity i is delayed (if

necessary) to assure that none of the maximum lags associated with that activity will be violated,

and then all other activities in the set are delayed (if necessary) to assure that none of the minimum

lags associated with activity i are violated. Step 13, then, updates the activity sets and labeling

recommences at Step 8.

Once early start times have been determined, Step 14 renumbers the activities from earliest

start time to latest start time.

Steps 15 through 22 determine the late start times of each activity by essentially reversing the

early start time labeling process. Late start times are bound by the project horizon, in the same

way early start times are bound by the project release date. With both early and late start times

determined, the feasible start time windows of each activity are known.

Finally, program and project due dates are calculated using the due date factors found during

basic data generation and the following equation:

? ?? ?pJpJppJp ESLSESroundDD ??? *? , p = 0, 1, 2, ..., P

where DD0 is the program due date.

Step 4 - Resource Data Generation. The generation of data for regular renewable and

nonrenewable resources is nearly identical to that detailed by Kolisch et al. (1992, 1995) for

ProGen. The primary difference is that in multiple-project problems, ProGen generates only

program-level resources (i.e., project-specific resources are not considered). The procedure

employed by PAGER generates project-level and program-level resources using the input data

listed in Table 4-5.

 The generation of resource data begins by identifying the number of renewable and

nonrenewable resources for each project and for the program using the following equation:

? ?? ?maxmin ,
ppp

rndround ??? ? , p = 0, 1, 2, ..., P-1,

where p = 0 refers to the program-level data.

The demand for resources is generated next by identifying which resources are demanded by

each activity-node combination and how much of those resources is demanded. This procedure,

 4-41

which uses parameters maxmin / ?? pp QQ , ?pRF , maxmin / ?? pp rr ,)1(P ?Fp? ,)2(P ?Fp? , and RF? , is

identical to ProGen's (see Kolisch et al., 1992 & 1995).

Resource availability is the last resource data to be generated. For regularly available

resources, the procedure used in ProGen is employed where a minimal demand, min
pqK , and a

maximal demand, max
pqK , are calculated for each resource q in project p. The availability of

resource q in project p is a convex combination of the minimal and maximal demands with the

resource strength as a scaling parameter. The resource strength is drawn from the uniform

distribution ? ?maxmin , ?? pp RSRS and the resultant resource availability is:

? ?? ?minmaxmin
pqpqppqpq KKRSKroundK ??? ?

Table 4-5. Input Parameters for Resource Data Generation

Parameter Definition Bounds

maxmin /
pp

?? min/max number of resources of type ? for project p [0, 10]

maxmin / ?? pp QQ min/max number of resources of type ? requested per job in

project p

[0, 99]

?pRF resource factor of resource type ? for project p [0.0, 1.0]

maxmin / ?? pp rr min/max resource demand for resource type ? for project p [0, 99]

maxmin / ?? pp RSRS min/max resource strength for resource type ? for project p [0.0, 1.0]

maxmin / ?? pp ERSERS min/max expediting resource strength for resource type ? for

project p

[0.0, 1.0]

)1(P ?Fp? prob. of duration-constant demands for resource type ? for

project p

[0.0, 1.0]

)2(P ?Fp? prob. of duration-nonincreasing demands for resource type ?

for project p

[0.0, 1.0]

RF? resource factor tolerance [0.0, 1.0]

For program-level resources, p = 0
For project-level resources, p = 1, 2, ..., P-1

 4-42

Evaluation of the minimal and maximal demands is as follows, noting that R
pimqr and N

pimqr are

the respective renewable and nonrenewable resource requirements for resource q when activity i of

project p is executed in mode m. For nonrenewable resources, then

? ??
?

? ?
?

1

2 1

min min
p pi

J

i

N
pimq

M

mpq rK

and

? ??
?

? ?
?

1

2 1

max max
p pi

J

i

N
pimq

M

mpq rK .

For renewable resources,

? ?
?
?
?

?
?
?

?
?

?

?
R
pimq

M

m

J

ipq rK
pip

1

1

2

min minmax

and the maximal demand is the peak demand of the precedence and lag preserving the earliest start

schedule. With each activity i executed in its lowest indexed mode employing maximal per-period

demand, that is, where ? ?R
pimq

M

mpiq rr
pi

1

* max
?

? and ? ?*

1

* min piq
R
pimqpi

M

mpiq rrmm
pi

??
?

, the resource-dependent

early start schedule is calculated with corresponding earliest start times, q
piES , and completion

times, q
piCT . The peak per-period demand is then:

??

?
?
?

??

?
?
?

? ? ?
??

?

??

q
pi

q
pi

p

pik

CT

ESt

J

i

R
qpim

horizon

t
pq rK

1

1

21

max
*max .

Note that when the resource strength is zero, there is just enough resource to complete the

program in the program horizon. When the resource strength is one, there is enough resource to

complete the program in its unconstrained CPM time.

To calculate the availability of expediting resources, the same minimal and maximal demands

are used. However, the sum of resource strengths for regular and expediting resources should not

exceed one, so that expediting resource availability is calculated as:

? ?? ?minmax
pqpqppq KKERSroundEK ?? ? .

Total resource availability is then

 4-43

? ?? ? ? ?? ?
? ?? ? ? ?? ?? ?minmaxminmaxmin

minmaxminmaxmin

pqpqppqpqppq

pqpqppqpqppqpqpq

KKERSroundKKRSroundK

KKERSroundKKRSKroundEKK

?????

??????

??

??

The costs associated with expediting resources are generated in the next step.

Step 5 - Cost Data Generation. There are three types of cost data generated depending on the

desired objective function: program/project completion penalties, mode costs, and expediting

resource costs. The input data required to generate this data is listed in Table 4-6.

If the objective function of the program scheduling problem includes the minimization of

program and project completion costs, program and project completion penalties are assessed

starting at one period past their respective due dates. That is, there is no penalty if the

program/project ends on or before its due date. If the program/project is one period late, the

program/project penalty base value is assessed. For each additional period that the

program/project is late, the penalty is increased by the penalty increment.

The program-level base penalty, 00PEN , and penalty increment, 01PEN , are specified by the

user in the specification file. All other costs are related to the program penalty base value and

increment. For instance, the completion penalty base value of a project p, 0pPEN , is a fraction of

the program penalty base value and is generated using the following equation:

? ?? ?min
0

min
0000 ,* ppp PENPENrndPENroundPEN ? ,

while the penalty increment, 1pPEN , is a fraction of the program penalty increment and is

generated using the following equation:

? ?? ?min
1

min
1011 ,* ppp PENPENrndPENroundPEN ? .

The importance of completing project p is, therefore, tied directly to the importance of

completing the program. If the project's penalty increment is half of the program's penalty

increment, then a one period delay in the completion of the project is half as costly as a one day

delay in the completion of the program.

Similarly, the costs of activity modes and start times and of expediting resources are tied to the

program completion penalty base value and increment. This provides the user a way to easily

reflect the relative cost of scheduling decisions to the cost of other decisions.

 4-44

A final note is that the cost of activities can be time-increasing, time-constant, or time-

decreasing. Permitting activity costs to change over time allows the user to design problems with

positive and negative cash flows. Again, activity costs have a base value related to the program

penalty base value and a per-period increment (positive or negative) related to the program penalty

increment.

Table 4-6. Input Parameters for Cost Data Generation

Parameter Definition Bounds

00PEN program base penalty [0, 9999]

01PEN program penalty increment [0, 9999]

max
0

min
0 / pp PENPEN min/max project base penalty *, p = 1, 2,..., P [0.0, 99.0]

max
1

min
1 / pp PENPEN min/max project penalty increment **, p = 1, 2,..., P [0.0, 99.0]

max
0

min
0 / pp MCMC min/max base mode cost *, p = 1, 2,..., P [0.0, 99.0]

max
1

min
1 / pp MCMC min/max mode cost increment **, p = 1, 2,..., P [0.0, 99.0]

? ?1GP ?p probability of time-increasing activity costs, p = 1, 2,..., P [0.0, 1.0]

? ?2GP ?p probability of time-decreasing activity costs, p = 1, 2,..., P [0.0, 1.0]

maxmin / pp ERCERC min/max expediting renewable resource base cost *,

p = 0, 1,..., P

[0.0, 99.0]

maxmin / pp ENCENC min/max expediting nonrenewable resource base cost*,

p = 0,..., P

[0.0, 99.0]

* denotes that these values are fractions of the program base penalty cost
** denotes that these values are fractions of the program base penalty increment

Step 6 - Problem Output. Once a problem instance has been generated, it may be output in

PAGER, ProGen, or MPS formats. The PAGER and MPS formats can reflect all of the features

that PAGER is designed to produce. The ProGen format, on the other hand, is not designed to

reflect generalized precedence relationships, expediting resources, or mode costs, and so ProGen

 4-45

format is unavailable if any of these features are invoked. A sample PAGER output file is

included as Appendix C.

PAGER Implementation

PAGER is programmed in FORTRAN 77 with a number of FORTRAN 90 extensions. It has

been implemented on an IBM-compatible computer with a Pentium 750 MHz processor and 256

MB of RAM, running Windows NT. This machine was used to generate the test problems used in

Chapters V and VI. Figures 4-12 through 4-13 report the distribution of times required to generate

a total of 10,521 test problems. Problems ranged in size from single projects with 5 activities to

four-project programs with 50 total activities. Overall, PAGER required an average of 0.95

seconds to generate a problem, with a minimum generation time under 0.01 seconds, a maximum

time of 155.67 seconds, and a variance of 19.90 seconds.

Figure 4-12 is a Box and Whiskers plot of problem generation times. The whiskers show the

minimum and maximum generation times, while the box shows the mean plus / minus two standard

deviations. Generation times are shown according to the number of activities in the problem.

Since the maximum generation time for problems with 50 activities is large compared to other

problem sizes, the box and whiskers for smaller problem sizes are difficult to see. Therefore, the

Box and Whiskers plot is repeated in Figure 4-13 with the 50-activity problems removed and the

y-axis time scale decreased.

Problems with 10 activities and with 50 activities both have an outlier. One problem with 10

activities required 8.43 seconds, compared to the next longest generation time of 1.11 seconds.

One problem with 50 activities took 155.67 seconds, compared to the next longest generation time

of 68.51 seconds.

 4-46

Box and Whiskers (+/- 2 Std Dev)

0

20

40

60

80

100

120

140

160

180

5 10 18 20 26 30 34 42 50
Total Activities

G
en

er
at

io
n

T
im

e
(s

ec
on

ds
)

Figure 4-12. Distribution of Generation Times (5 to 50 Activities)

Box and Whiskers (+/- 2 Std Dev)

0

1

2

3

4

5

6

7

8

9

5 10 18 20 26 30 34 42
Total Activities

G
en

er
at

io
n

T
im

e
(s

ec
on

ds
)

Figure 4-13. Distribution of Generation Times (5 to 42 Activities)

 4-47

Distribution of Generation Times by Number of Jobs

0

1000

2000

3000

4000

5000

6000

0.01 0.1 1 10 100 >100
Time Bin (seconds)

O
cc

ur
en

ce
s

5 Jobs 10 Jobs 18 Jobs 20 Jobs 26 Jobs 30 Jobs 34 Jobs 42 Jobs 50 Jobs

Figure 4-14. Distribution of Generation Times by Number of Jobs

Figure 4-14 presents the generation time data by time bin. The bars on the chart represent the

number of problems generated within the bounds of the respective time bin. Different shaded bars

are used to differentiate problems of different sizes (i.e., number of activities). The vast majority

of problems (95%) required no more than one second of generation time.

Summary and Conclusions

Table 4-7 summarizes the key features of PAGER and the other generators discussed above.

All of the generators can generate single-project, single-mode problems with renewable resources.

Differences between the generators include their multi-project capabilities, the types of resources

generated, the measures of network complexity used, and the measures of resource availability

used. All of the generators output problems in their own specific format. In addition, some

generators are capable of output in formats used in other test sets (Patterson and ProGen) or, in the

case of PAGER, in MPS format.

PAGER is the first problem generator to directly exploit the reachability matrix of a network

to generate problem networks with precisely controlled values of RT. It is also the first to

 4-48

simultaneously use two measures of network complexity, RT and CNC, in the network generation

process. PAGER fills the need to generate multi-project problems with project-specific networks

and resources, interrelationships between projects, and program-level network structure and

resources.

 4-49

Table 4-7. Key Features of Problem Generators

 DDH ProGen/max/ x? DAGEN PAGER
Multi-Project Problems x x x
 w/Program-Level Resources x x x
 w/Project-Specific Resources x
 w/Time-Related Projects x
 w/Unique Project Networks x

Multiple Modes x x x x
Minimum Time Lags x x x
Maximum Time Lags x x
Changeover Times x
Mode and Set of Mode Identity x
Forbidden Periods x

Mode Costs (Time-Constant) x x
Time-Increasing/-Decreasing x
Expediting Resource Costs x

Network Complexity Measures:
 Coefficient of Network Complexity x x
 Thesen’s Restrictiveness x x x
 Direct Use of Thesen Restrictiveness x
 Complexity Index x
 Choice of Measures x
 Simultaneous Measures x

Renewable Resources x x x x x x
Nonrenewable Resources x x x x x
Partially-Renewable Resources x
Expediting Resources x

Resource Availability Measures:
 Resource Factor x x x x
 Resource Strength x x x x
 Parameter(s) Randomly Drawn x x

Output:
 Patterson Format x
 ProGen Format x x x
 PAGER Format x
 MPS Format x

 5-1

V. Single Project Scheduling

Overview

This chapter presents an algorithm for solving the Multi-Modal, Resource-Constrained Project

Scheduling Problem with Generalized Precedence and Expediting Resources (MRCPSP-

GPR/EXP). The MRCPSP-GPR/EXP is the single-project, special case of the Multi-Modal,

Resource-Constrained, Multi-Project Scheduling Problem with Generalized Precedence and

Expediting Resources (MRCMPSP-GPR/EXP). While Chapter III highlighted the nature of the

multi-project MRCMPSP-GPR/EXP, the ability to solve either single-project or multi-project

problems is entirely dependent on the availability of an algorithm for solving single-project

problems. More specifically, every instance of the MRCMPSP-GPR/EXP falls into one of the

following three categories:

1. The problem is a true single-project MRCPSP-GPR/EXP. That is, an instance which
represents a real-world problem which is a single project.

2. The problem is a multi-project MRCMPSP-GPR/EXP which is treated and scheduled as a
single super project.

3. The problem is a subproblem of a larger multi-project instance of the MRCMPSP-
GPR/EXP. While a multi-project program may be scheduled as a super project as in
Category 2 above, it may also be scheduled using the decomposition approach presented in
the next chapter. When scheduled using the decomposition approach, the decomposed
subproblems must still be solved - as single-project instances.

In any of the preceding categories, solution of the problem starts with the scheduling of a single

project.

With the goal of developing an appropriate solver for the single-project MRCPSP-GPR/EXP,

this chapter begins with a discussion of solution approaches from the literature and how they relate

to this particular problem. Specifically, approaches used for related problems are reviewed for

their applicability to the MRCPSP-GPR/EXP, keeping in mind the unique characteristics of the

MRCPSP-GPR/EXP, as well as its intended uses.

An approach for solving the MRCPSP-GPR/EXP is then presented, beginning with the

development of a basic algorithm and then adding on additional bounding rules designed to increase

the speed of the basic algorithm and, consequently, the size of problems which can be solved.

Testing of the algorithm is reported, followed by a chapter summary. To aid the reader in

 5-2

following the notation used in this chapter and other chapters, refer to Appendix A for a complete

listing of symbols, variables, and parameters.

Approaches from the Literature

The single-project MRCPSP-GPR/EXP shares many characteristics with other scheduling

problems discussed in the literature. Most obvious are the finish-start precedence relationships

between activities and the dependence of activity completion time and resource use on the activity

completion mode. Other characteristics are less common – some of which preclude use of some of

the proven solution techniques in the literature. The desire to use the solution algorithm in the

decomposition methodology presented in the next chapter also puts constraints on the approach

used to solve the MRCPSP-GPR/EXP. In light of these characteristics and constraints, solution

approaches from the literature have been evaluated for their applicability to the MRCPSP-

GPR/EXP. The intent is to identify proven approaches which may form the basis of an approach

for the MRCPSP-GPR/EXP.

Implicit Enumeration by Branch-and-Bound. Among the approaches found in the literature for

solving project-scheduling problems, the most efficient are branch-and-bound enumeration

algorithms. These algorithms reduce the enumeration tree by searching among active schedules

only. These algorithms have been presented by Stinson et al. (1978), Christofides (1987), and

Demeulemeester and Herroelen (1992) for the Resource-Constrained Project Scheduling Problem

(RCPSP); by Patterson et al. (1989, 1990), Sprecher (1994), Sprecher and Drexl (1996a, 1998),

Sprecher et al. (1997), and Hartmann and Drexl (1998) for the Multi-Modal, Resource-

Constrained Project Scheduling Problem (MRCPSP); by Demeulemeester and Herroelen (1997)

for the Generalized, Multi-Modal, Resource-Constrained Project Scheduling Problem

(GMRCPSP); by De Reyck and Herroelen (1998a, 1998b) and Herroelen et al. (1998) for the

Multi-Modal, Resource-Constrained Project Scheduling Problem with Generalized Precedence

(MRCPSP-GPR); and by Van Hove (1998) for the Generalized, Multi-Modal, Resource-

Constrained Multi-Project Scheduling Problem (GMRCMPSP). Understanding the efficiency of

these algorithms requires some discussion of active scheduling.

Consider, first, Definitions 5-1 through 5-8, provided by Sprecher et al. (1995).

 5-3

Definition 5-1. Schedule (Sprecher et al., 1995: 97)

Consider a project with J activities. Let sj and mj be the respective start time and execution

mode of activity j. A schedule, S = (s, m), is a combination of J-tuples, s = (s1,… , sJ) and

m = (m1, … , mJ), which provide the start time and execution mode of each activity j, j = 1,

… , J.

Definition 5-2. Feasible Schedule (Sprecher et al., 1995: 97)

A schedule S is called feasible if the precedence relations are maintained and the resource

constraints are met.

Definition 5-3. Left Shift (Sprecher et al., 1995: 97)

A left shift of an activity j, j = 1, … , J, is an operation on a feasible schedule S, which

derives a feasible schedule S?, such that jj ss ?? and ii ss ?? , for i, i = 1, … , J, ji ? .

In words, left shifting an activity consists of moving the start time of an activity to an earlier

time without moving the start time of any other activity and while maintaining feasibility.

Definition 5-4. One-Period Left Shift (Sprecher et al., 1995: 97)

A left shift of an activity j, j = 1, … , J, is called a one-period left shift if 1??? jj ss .

Definition 5-5. Local Left Shift (Sprecher et al., 1995: 97)

A local left shift of an activity j, j = 1, … , J, is a left shift of activity j which is obtainable

by one or more successively applied one-period left shifts of activity j.

Sprecher (1994: 97) notes that within a local left shift, each intermediate derived schedule has

to be feasible, by definition.

Definition 5-6. Global Left Shift (Sprecher et al., 1995: 97)

A global left shift of an activity j, j = 1, … , J, is a left shift of activity j which is not

obtainable by a local left shift.

 5-4

Definition 5-7. Semi-Active Schedule (Sprecher et al., 1995: 97)

A semi-active schedule is a feasible schedule where none of the activities j, j = 1, … , J,

can be locally left shifted.

Definition 5-8. Active Schedule (Sprecher et al., 1995: 98)

An active schedule is a feasible schedule where none of the activities j, j = 1, … , J, can be

locally or globally left shifted.

The efficiency of algorithms which search over active schedules only hinges on the concept

that, under appropriate conditions, a project must have an active schedule which is optimal

(Sprecher, 1994). The necessary conditions for this to be true are (1) the project schedule is

feasible and (2) the project schedule’s objective function is a regular measure of performance. The

feasibility of the project schedule is an obvious condition. However, the regular measure of

performance condition requires further explanation.

Definition 5-9. Regular Measure of Performance

Consider a scheduling problem with the objective to minimize some measure of schedule

fitness, ? . Let S = (s, m) be a feasible schedule for the problem and let ? (s, m) represent

the fitness of schedule S. ? is a regular measure of performance if ? (s, m) < ? (s’, m)

implies that jj ss ?? for at least one j, j = 1, … , J.

Definition 5-10. Non-Regular Measure of Performance

Consider a scheduling problem with the objective to minimize some measure of schedule

fitness, ? . ? ?is a non-regular measure of performance if it is not a regular measure of

performance.

In simple terms, a regular measure of performance is one where a decrease in the objective

function value implies that at least one activity starts earlier in the improved schedule than it does

in the competing schedule. The objective of minimizing the project makespan (see Chapter II,

Equation (10)) is an example of a regular measure of performance (Sprecher, 1994). Kolisch and

Padman (1998: 3) explain that a regular measure of performance is one where “we can compare

 5-5

two schedules for a given problem which differ only in the finish time of one activity and we can

state that the schedule which has the smaller finish time for this activity is at least as good as the

other schedule, i.e., the former dominates the latter.” Consequently, left-shifting the start time of

any activity never results in a worse objective value function.

The preceding discussion of active schedules and regular measures of performance is important

because of their positive impact on the execution time of so many approaches in the literature.

Unfortunately, the MRCPSP-GPR/EXP cannot exploit the concept of active schedules for two key

reasons.

First, the objective function of the MRCPSP-GPR/EXP (Chapter III, Equation (20)) is a non-

regular measure of performance (Kolisch and Frase, 1996: 139). This is a consequence of the

availability of expediting resources and the corresponding objective of minimizing project costs,

including the cost of expediting resources. Consider a project, P, with no expediting resources and

an objective function to minimize makespan. Since P has an objective function which is a regular

measure of performance, it follows that P has an active schedule, S, which is optimal. By

definition, it is impossible to left shift any activity in S, while maintaining precedence and resource

feasibility. Suppose, however, that there is some activity j which could be left shifted while

maintaining precedence feasibility, but which would result in a resource conflict. If expediting

resources (at no cost) were now made available which would permit the left shifting of activity j,

then the current schedule, S, is no longer an active schedule. Assuming that left shifting activity j

alone would result in an active schedule (i.e., addition of the expediting resources did not impact

the ability of other activities, including the terminal activity, to be left shifted), then the new

schedule, S?, would have the same value as the previous schedule, S. However, if there is a

positive cost associated with the expediting resources which made S? feasible and the objective

function is expanded to include the cost of expediting resources, then S? is, in fact, dominated by

S. Furthermore, since it was the addition of expediting resources alone that enabled activity j to

shift left to form active schedule S?, schedule S, a non-active schedule, remains optimal even for

the expanded objective function. Hence, the inclusion of expediting resources makes an objective

function a non-regular measure of performance and it is no longer sufficient to search only the

active schedules to find an optimal. This result is confirmed by Kolisch and Frase (1996: 139).

Second, the decomposition approach described in Chapter III, for solving the multi-project

MRCMPSP-GRP/EXP, requires the generation of the k-best solutions of single-projects. Even in

 5-6

the absence of expediting resources (which would make the objective function a regular measure of

performance), it is still necessary to enumerate over the non-active schedules. The reason lies in

the interdependence of the projects at the program level where projects are temporally related and

must also compete for common renewable resources. Suppose that a project P has two schedules

of equal value: S1, an active schedule, and S2, a non-active schedule. This is entirely possible

whether the objective function is a regular or non-regular measure of performance. If project P

must now adjudicate the start times of its activities and its resource requirements with other

projects at the program-level, project P is indifferent to the two schedules, S1 and S2, provided

there is no program-level cost associated with the two schedules. However, it is possible that

schedule S2, the non-active schedule, is feasible as to the program-level temporal relationships and

resource availabilities, while S1, the active schedule, is not. Therefore, in the development of the

set of k-best solutions to the single-project problem, all schedules, active and non-active, must be

evaluated. This evaluation leads not only to the enumeration of possibly all of the optimal

solutions, but also to the enumeration of equal-valued, suboptimal solutions.

It should be noted that Van Hove (1998) develops a similar decomposition approach for the

multi-project GMRCMPSP, but one where only active schedules are considered. Because the

GMRCMPSP does not include expediting resources, its objective function is a regular measure of

performance. From the previous discussion, however, one might suspect that Van Hove’s

subproblem solver would still need to enumerate non-active schedules. Enumerating non-active

schedules is unnecessary, though, because Van Hove assumes that projects are temporally

independent. Therefore, Van Hove enumerates the k-best active schedules of a project, all of which

are, by assumption, temporally and renewable-resource feasible at the program level. The question

that remains in Van Hove’s approach is which of the k-best active schedules adjudicates best with

the other projects for nonrenewable resources. Van Hove demonstrates the utility of this approach

for the development of Air Tasking Orders (ATOs) in the wartime campaign planning process.

The approach, however, is inadequate for the nature of the MRCPSP-GPR/EXP.

Having eliminated the active-schedule enumeration schemes, there are still two approaches to

evaluate for their applicability to the MRCPSP-GPR/EXP: zero-one programming and an implicit

enumeration scheme by Talbot (1982).

Zero-One Programming. Some of the earliest attempts to solve the RCPSP were based in

zero-one programming. These attempts differed not so much in the procedure used to solve the

 5-7

zero-one program, but in the way the zero-one program was formulated (e.g., Bowman, 1959;

Pritsker et al., 1969). Chapter III presents a complete zero-one formulation of the

MRCPSP-GPR/EXP using the variable definitions proposed by Pritsker et al. (1969). This

formulation can be solved directly, without modification, by any general zero-one program solver.

As discussed in Chapter II, zero-one programming attempts at solving the resource-constrained

project scheduling problems have generally led to solution times which are orders of magnitude

greater than those required by specialized algorithms. This unfortunate reality is undoubtedly true

for the more general MRCPSP-GPR/EXP. Nonetheless, zero-one programming is still a valid

approach and advances in zero-one programming have improved the efficiency of zero-one solvers.

One of these key advances is the concept of Special Ordered Sets (SOS) of Variables. As

described in Chapter II, the exploitation of the SOS variables in the project scheduling problems

significantly reduces the number of leaves in a search tree (corresponding to feasible solutions that

must be explicitly or implicitly evaluated) and improves solution time. Because of its applicability

to the MRCPSP-GPR/EXP, zero-one programming is a candidate approach to be computationally

compared to other applicable approaches.

Implicit Enumeration by Activity Sequence. Talbot (1982) presents an implicit enumeration

scheme for the MRCPSP, where partial schedules in the enumeration scheme are extended based

solely on a predetermined activity sequence, rather than on feasibility tests like the branch-and-

bound methods. Though it lacks some of the elegance of the branch-and-bound methods, its

simplicity provides a precise and straightforward way to assure that all schedules have been

enumerated (implicitly or explicitly). The approach also lends itself to being extended for

generalized precedence and expediting resources. Because of its flexibility to evolve for the

characteristics of the MRCPSP-GPR/EXP and its ability to enumerate all schedules, Talbot’s

algorithm provides the best starting point for developing an approach for the MRCPSP-GPR/EXP.

Basic Algorithm

The basic algorithm for the MRCPSP-GPR/EXP, hereafter referred to simply as the

Scheduler, is an extension of the algorithm by Talbot (1982) for the MRCPSP. For the MRCPSP-

GPR/EXP, the algorithm by Talbot must be extended to account for generalized precedence

constraints and expediting resources. Extension of the algorithm constitutes this section. The next

section presents a number of bounding rules designed to improve the efficiency of the Scheduler.

 5-8

These rules are presented separately, rather than being incorporated directly into the basic

algorithm, for two reasons. (1) Treating the rules as options enables their contribution to solution

time, singly and in combination, to be more readily assessed. (2) If testing reveals that solution

times are negatively impacted by any bounding rule, the rule may be easily eliminated from the

solution algorithm. Note that bounding rules may improve the solution time of problems with

certain characteristics while increasing solution times for problems with other characteristics.

The Scheduler is a depth-first implicit enumeration scheme which descends the branches of the

search tree to find feasible improving solutions. Each level, i, of the search tree represents a partial

schedule where only i activities have been scheduled. One activity is added to the schedule at each

level. Partial schedules are augmented until all activities are scheduled and a complete feasible

solution is found. Complete solutions are stored in a k x (J + 1) x 2 array, where k is the number

of best solutions desired, and J is the number of activities in the problem. For each activity, the

solution array stores two values: (1) its execution mode and (2) its start time. The objective

function value is stored in Row 0 of the array. The solution array is initialized with appropriately

large values (e.g., 9999999).

When the algorithm finds a feasible solution, the objective function value of the solution is

compared to that of the k-th best solution in the solution array. If the objective function value of

the new solution is less than or equal to that of the k-th best solution, the new solution is added to

the solution array and the ranking of the new solution is determined. The solution in the k-th

position in the solution array is dropped from the array.

While solutions are added to the array of k-best solutions, a counter is incremented to record

the number of solutions which have become part of the array. In the event that there are fewer than

k feasible solutions, the value of k is reset to the count of feasible solutions. This assures that only

feasible solutions are reported.

Using a depth-first search allows the solution array to be filled with k solutions as quickly as

possible. These k solutions replace the artificially large values with which the solution array is

initialized. Since branches of the search tree may be fathomed if any feasible solution on that

branch is dominated by the current k-th best solution, having the solution array filled with good

solutions provides a tighter upper bound which allows earlier fathoming of branches.

When scheduling a project, a scheduler may wish to present a decision-maker with a set of

feasible schedules rather than a single optimal schedule generally returned by most approaches.

 5-9

While a scheduling purist may always look for an optimal solution, decision-makers may prefer an

alternate-optimal solution, or even a mathematically sub-optimal solution, for subjective or non-

quantifiable reasons. The methodology used here for finding k-best schedules for a project

provides decision makers such options. The methodology also provides the sets of solutions

required by the decomposition algorithm developed in the next chapter (see Chapter VI).

The algorithm has two phases: an initialization phase and a search phase. Before the algorithm

is presented, the key assumptions are outlined.

Assumptions.

1. Activity modes are numbered in order of increasing duration.

2. Only time-constant and time-increasing mode costs (cash flows) are considered.

3. All costs are non-negative.

4. Renewable resource availability need not be constant, but availabilities beyond the project

horizon, D, are such that schedules completing beyond the project horizon are dominated

by the set of k-best solutions. This would be true, for example, if the availability of

resources were zero for periods D+1, D+2, and so on. In this case, only schedules

completed by D would be feasible. This assumption is stated in such a way that the usual

assumption of constant resource availability can be relaxed, while at the same time

assuring the problem remains bounded and optimality can be assured. The Program

Attributes Generator with Expediting Resources (PAGER) described in Chapter IV, as

well as most other problem generators, uses the sum of activity durations, with each

activity in its longest-duration mode, as the project horizon. This is certainly a convenient

upper bound on the project makespan. The project manager may, however, choose any

arbitrary value as the project horizon, provided there exists at least one precedence- and

resource-feasible schedule that can be completed by the chosen horizon.

5. During the Initialization Phase when the early- and late-start times of each activity are

calculated, the activities are scheduled using their shortest duration mode. If a mode of

longer duration were used, the early start of successor activities would be greater than

otherwise possible and the late start time of predecessor activities would be less than

otherwise possible.

6. Activities of zero duration (including, but not limited to, the dummy start and end activities

of a project) may be included in the project. They may represent cash flows not associated

 5-10

with a specific activity, milestones within a project, or dummy project source/sink nodes

within a multi-project program.

Initialization Phase. During the initialization phase, the problem (with the resource constraints

relaxed) is solved using a CPM-type labeling routine. The Generalized Critical Path Method

(GCPM), detailed in Chapter IV, calculates the early and late start times of the activities based on

their generalized precedence relationships. With early start times determined, the order that

activities are added to the schedule is fixed, early start time first (in the case of ties, low activity

number first). Fixing the order in which activities are added to the schedule is a departure from

algorithms which gain their efficiency by enumerating only the active schedules. These active-

schedule algorithms are proven to converge because they enumerate the active schedules of

permutations of activities. In scheduling the MRCPSP-GPR/EXP, though, all schedules must be

enumerated (implicitly or explicitly), so there is no computational advantage to permutating

activities. The advantage, however, of adding activities in numerical order is a more

straightforward implementation of the search scheme.

Search Phase. During the enumeration of the search tree, the algorithm descends from one

level to the next, adding activities to the previous partial schedule. Activities are scheduled to start

only at times and in modes which are feasible to the generalized precedence and resource

constraints. When a leaf of the search tree is reached, the newly found schedule is added to the set

of k-best solutions if its objective function value is as good as the objective function value of the

current k-th best solution and discarded otherwise. The algorithm, then, backtracks, first to

unexplored start times of the current activity and mode assignment, then to unexplored modes of

the current activity. When all modes and start times of the activity at the current level have been

exhausted, the algorithm backtracks to the previous activity to continue the enumeration of its

modes and start times. When the algorithm tries to backtrack from the source node, it terminates.

The algorithm and associated notation are outlined below. Without loss of generality, assume

activities are numbered in the order in which they are scheduled so that activity i is added at level i

of the tree.

 5-11

Notation for Search Algorithm

Activity Indexes:

 i = the activity added at level i of the search tree

 mi = the currently scheduled mode of activity i

 si = the currently scheduled start time of activity i

Activity Sets:

 Oi = the set of activities which precede activity i

 Ni = the set of activities which have a direct start-start lag relationship with activity i

 *
iN = the set of activities which have a direct or indirect lag relationship with activity i

Resource Sets:

 RQ = the set of all renewable resources

 NQ = the set of all nonrenewable resources

Time-Related Parameters:

 F = the early program completion time

 G = the program completion due date

 D = the program planning horizon, or drop dead date (F < G < D)

 ei = the early start time of activity i

 li = the late start time of activity i

 wi = [ei, li], the start time window of activity i

iimd = the duration of activity i in mode mi

 min
ij? = the minimal start-start lag time between activities i and j

 max
ij? = the maximal start-start lag time between activities i and j

Resource-Related Parameters:

 R
qimi

r = the units of renewable resource q required by activity i in mode mi

 5-12

 R
qtiR , = the units of renewable resource q remaining at time t at level i

 R
qtiH , = the units of expediting, renewable resource q remaining at time t at level i

 N
qimi

r = the units of nonrenewable resource q required by activity i in mode mi

 N
qiR , = units of nonrenewable resource q remaining at level i

 N
qiH , = the units of expediting, nonrenewable resource q remaining at level i

Cost Parameters:

 M
sim ii

c = the cost incurred by scheduling activity i in mode mi at start time si at level i (for

terminal activity J, this is the completion penalty)

 R
sim ii

c = the cost of expediting, renewable resources incurred by scheduling activity i in mode

mi at start time si at level i

 N
imi

c = the cost of expediting, nonrenewable resources incurred by scheduling activity i in

mode mi at level i

 iC = the total partial schedule cost after level i

)(k
JC = the total complete schedule cost of the (current) kth-best schedule

Basic MRCPSP-GPR/EXP Project Scheduler

Step 0 Initialization (Start Time Labeling). Run Generalized Critical Path Method (GCPM)

Algorithm detailed in Chapter IV to calculate activity start time windows.

Step 1 Let i = 1. Assign activity 1 (the source node) its single mode, m1 = 1, and early start

time, s1 = e1.

Step 2 Let i := i + 1 and assign the next activity in order (activity i) its first mode, mi = 1.

Step 3 Nonrenewable Resource Feasibility. Determine if mi is feasible to the nonrenewable

resource constraints (i.e., the sum of regular and expediting nonrenewable resources is

sufficient for activity i’s nonrenewable resource demand). That is, if

 5-13

NN
qi

N
qi

N
qim QqHRr

i
???? ?? ,,1,1 , then mi is nonrenewable-resource feasible. If not

feasible, go to Step 12.

Step 4 Assign activity i its early start time, si = ei.

Step 5 Minimum Start Time Feasibility. Determine if activity i’s current start time is feasible

to the precedence and start-start minimal lag constraints. Depending on the duration,

iimd , of activity i and the duration,
jjmd , of its predecessor activity j, the following

conditions must hold for minimum start time feasibility. If infeasible, go to Step 11.

 0?
iimd 0?

iimd

0?
jjmd

ijmji Ojdss
j

???? ,

ijCjss ijiji ?????? , ,min

ijmji Ojdss
j

????? ,1

ijCjss ijiji ??????? , ,1min

0?
jjmd

iji Ojss ???? ,1

ijCjss ijiji ??????? , ,1min

iji Ojss ??? ,

ijCjss ijiji ?????? , ,min

Step 6 Maximum Start Time Feasibility. Determine if activity i’s current start time is feasible

to the start-start maximal lag and project horizon constraints. Depending on the

duration of activity i and its predecessor, the following conditions must be true for

maximum start time feasible. If not feasible, go to Step 12.

 5-14

 0?
iimd 0?

iimd

0?
jjmd

ijCjss ijiji ?????? , ,max

1???
iimi dDs

ijCjss ijiji ??????? , ,1max

Dsi ?

0?
jjmd

ijCjss ijiji ??????? , ,1max

1???
iimi dDs

ijCjss ijiji ?????? , ,max

Dsi ?

Step 7 Renewable Resource Feasibility. Determine if activity i’s current mode and start time

are feasible to the renewable resource constraints (i.e., the sum of regular and

expediting renewable resources in each period over which activity i extends is sufficient

for activity i’s renewable resource demand). That is, if

ii imii
RR

qti
R

qti
R

qim dstsQqHRr ??????? ?? , ,,1,1 , then activity i’s current mode and

start time are renewable-resource feasible. If not feasible, go to Step 11.

Step 8 Adjust Resources and Costs. The new partial schedule formed by adding activity i in

mode mi at start time si is feasible and may lead to an improved solution. Adjust

resource availabilities and the schedule cost as follows:

?? N
N

qi
N

qim

N
qi

N
qim

N
qim

N
qiN

iq Qq
Rr
RrrR

R
i

ii ??
??
?
?
?

??
?
?
?

?
??

?
?

?? ,
 if 0
 if

,1

,1,1

?? N
N

qi
N

qim
N

qim
N

qi
N

qi

N
qi

N
qimN

iq Qq
RrrRH
Rr

H
ii

i ??
??
?
?
?

??
?
?
?

???
?

?
???

? ,
 if
 if 0

,1,1,1

,1

??
i

i

ii
imii

R
R

qti
R

qtim

R
qti

R
qtim

R
qtim

R
qtiR

iqt dstsQq
Rr
RrrR

R ?????
??
?
?
?

??
?
?
?

?
??

?
?

?? , ,
 if 0
 if

,1

,1,1

 5-15

??
i

ii

i
imii

R
R

qti
R

qtim
R

qtim
R

qti
R

qti

R
qti

R
qtimR

iqt dstsQq
RrrRH
Rr

H ?????
??
?
?
?

??
?
?
?

???
?

?
???

? , ,
 if
 if 0

,1,1,1

,1

?? R
sim

M
sim

N
imii iiiii

cccCC ???? ? 1

Step 9 If activity i is NOT the terminal sink node, go to Step 2. Otherwise (i.e., activity i is

the terminal node), if this schedule is as good as the current k-th best solution, add this

complete schedule to the set of k-best solutions.

Step 10 Adjust Resources and Costs. Remove activity i in mode mi at start time si from the

current complete schedule. Adjust resource availabilities and the schedule cost.

Step 11 Backtrack by Start Time. Assign activity i start time si := si + 1. If start time, si, is less

than or equal to the late start time of activity i (ii ls ?), go to Step 5.

Step 12 Backtrack by Mode. Assign activity i mode mi := mi + 1. If mode, mi, is less than or

equal to the maximum number of modes of activity i, go to Step 3.

Step 13 Backtrack by Activity. Backtrack to activity i := i – 1. If 0?i , go to Step 11.

Step 14 Stop. Algorithm complete and k-best solutions found.

In the mathematical formulation of precedence relationships (Chapter III, Equations (2)

through (7)), it is generally assumed that both activities in a precedence relationship have non-zero

duration. Note, however, that the conditions in Steps 5 and 6 contain cases where one or both

activities in a precedence relationship have zero duration. As discussed in Chapter IV (see Figure

4-11 and accompanying text), the rules for activities with zero duration are somewhat different

than for those with non-zero duration. Steps 5 and 6 implement these alternate rules.

Since a cost is incurred only for the use of expediting resources, regular and expediting

resource availabilities must be accounted for separately. This accounting is done in Steps 8 and 10

where resource availabilities are adjusted. When adding an activity to a partial schedule in Step 8,

one of two cases is true: 1) the demand by the activity for a particular resource is no greater than

the current regular availability of that resource or 2) the demand for the resource is greater than

 5-16

the current regular availability of that resource. If the demand is no greater than the current

regular availability, then the regular avail ability alone is decremented. If, on the other hand, the

demand exceeds current regular availability, then all of the regular availability is used first and

then expediting resources are used to meet the balance of the resource demand. Conversely, in

Step 10 where activities are removed from the partial schedules, the freed resources are used first

to backfill the expediting pool of resources and then the regular pool.

With the Basic MRCPSP-GPR/EXP Project Scheduler outlined, attention is now turned to the

convergence of the algorithm, in Theorem 5.1.

Theorem 5-1. Optimality of the Basic MRCPSP-GPR/EXP Project Scheduler

Theorem: If P is a feasible MRCPSP -GPR/EXP, the best solution found by the

MRCPSP-GPR/EXP Project Scheduler is an optimal solution for P.

Proof: Let P be a feasible MRCPSP-GPR/EXP with objective function ? .

 Define a schedule of P to be a precedence- and resource-feasible assignment

of a mode and start time to each activity in P, along with the accompanying

expediting resources required to make that assignment feasible.

 Let S be an optimal schedule for P with objective function value ? ?S? .

 Must show that the Basic MRCPSP-GPR/EXP Project Scheduler finds a

schedule S? with ? ? ? ?SS ?? ?? .

 Let A be an explicit enumeration of all possible schedules of P, where each

activity i in P may be performed in any of its respective modes, mi, and may

start at any time in the interval ? ??,1 . Then, A contains all schedules of P

and, consequently, ? a schedule AS ?? such that ? ? ? ?SS ?? ?? .

 Now show that the Basic MRCPSP-GPR/EXP Project Scheduler eliminates

all schedules, S in A, where ? ? ? ?SS ?? ? , but does not eliminate S?.

 5-17

 Enumeration Control. Most of the steps of the Basic MRCPSP-GPR/EXP

Project Scheduler control the incrementing and backtracking of the algorithm.

A few additional steps limit the activity start time windows (Steps 5 and 6)

and provide basic resource feasibility tests (Steps 3 and 7). In the absence of

Steps 3, 5, 6, and 7, the algorithm would explicitly enumerate every mode

assignment of each activity, as well as every possible start time for each

activity from t = 1 to ? . Must show, then, that the start time limitations and

feasibility tests do not eliminate solutions which would dominate all other

solutions.

 Reduction of Project Horizon. In its initialization phase, the Basic MRCPSP-

GPR/EXP Project Scheduler eliminates all schedules which complete after the

project horizon, D. By design, the project horizon and renewable resource

availabilities are defined in such a way that ? a schedule which completes by

D without the need for expediting resources. In PAGER, as with most other

problem generators, D is defined as the sum of all activity durations, with

each activity in its longest-duration mode. Regular renewable resource

availabilities are, then, generated sufficiently high so that the above condition

is always true. If resource availabilities are given and not generated, then D

must be chosen such that: (1) D is no less than the sum of all activity

durations, with each activity in its longest-duration mode, and (2) the above

regular renewable resource condition holds. Assume, for the moment, that

resource availability is constant. This assumption is relaxed later.

 Let ?S be a schedule for P, such that some activity, ?i , completes after time

D. By the way D is defined, scheduling activities back-to-back (regardless of

order) at most spans D. Consequently, scheduling activity ?i to complete

after D implies that schedule ?S creates some time interval ? ?21 , tt , with

Dt ?2 , when no activity is in process. Because resource availability is

assumed to be constant, all activities which are scheduled to start after 2t can

be shifted 112 ?? tt time units to the left, while maintaining their relative

temporal relations and without increasing expediting resource costs. (If there

 5-18

are other such time intervals remaining, they may be eliminated in the same

way.)

 Now, every activity in the revised schedule, ?
DS , completes by time D. Since

activity costs are non-decreasing in time and since activity ?i starts earlier in

schedule ?
DS than it did in schedule ?S , the cost of activity ?i under schedule

?
DS is no greater than its cost under schedule ?S . The same holds true for any

other activity shifted to create schedule ?
DS . Therefore, the cost of the revised

schedule, ?
DS , is no greater than that of schedule ?S , ? ? ? ???? SS ?? D . This

implies that, for every schedule, ?S , which completes after D, ? a schedule,

?
DS , which completes by D which has objective function value less than or

equal to ?S . Therefore, if all schedules which complete after D are

eliminated, there yet remains an optimal schedule for P.

 The assumption of constant resource availabilities may, now, be relaxed with

the assumption that times beyond D are either infeasible (e.g., zero resource

availability), dominated, or of no practical interest to the Program Manager.

 Reduction of Early/Late Activity Start Times. The initialization phase also

calculates early and late start time windows, with the assumption that no

activity starts before time 1 or completes after time D. The proof for the

GCPM, in Chapter IV, shows that no activity may start before its calculated

early start time or after its late start time without violating generalized

precedence constraints or pushing some other activity outside the assumed

start or completion bounds of the project. Hence, eliminating activity start

times outside their respective early/late start times (Steps 5 and 6) eliminates

only infeasible assignments and, therefore, cannot eliminate an optimal

solution.

 Resource Feasibility Tests. Steps 3 and 7 perform tests to check if adding an

activity (in a given mode and start time) to the current partial schedule creates

a resource conflict. If so, the next mode and start time assignment are

 5-19

checked. Again, these steps eliminate only infeasible activity assignments and

cannot, therefore, eliminate an optimal solution.

 Optimality Test. Step 9 is executed only when a complete (and feasible)

schedule, S , has been constructed. A comparison between S and the

currently best schedule, Ŝ , is made. If ? ? ? ?SS ˆ?? ? , then S is eliminated.

Otherwise, S becomes the current best solution, Ŝ := S . When all schedules

have been enumerated and tested, let the remaining best solution be relabeled

S?.

 It has been shown that the Basic MRCPSP-GPR/EXP Project Scheduler

explicitly enumerates all schedules of P within the bounds of the project

horizon, D. It has also been shown that limiting the search for schedules that

complete by D does not eliminate any schedule which dominates all other

schedules. Therefore, the Basic MRCPSP-GPR/EXP Project Scheduler has

been shown to eliminate all schedules, S in A, where ? ? ? ?SS ?? ?? . Since no

other schedules remain untested, S? is an optimal solution, where

? ? ? ?SS ?? ?? .

Bounding Rules

Recall that, in the Scheduler, activities are scheduled to start only at times and in modes which

are feasible to the generalized precedence and resource constraints. In addition to the basic

algorithm’s rudimentary feasibility tests, more advanced feasibility and goodness tests (based on

objective function value) may be applied to eliminate partial schedules which lead to infeasible

complete schedules or schedules dominated by the current k-th best schedule. By applying better

feasibility tests and by checking schedule goodness at each level of the tree rather than only at the

leaves where complete schedules are found, unproductive branches of the tree may be fathomed

sooner, thereby reducing the portion of the tree explicitly enumerated. The efficiency of the

algorithm may be improved based on the degree to which feasibility and bounding rules prune the

search tree. This section provides a number of these rules.

 5-20

Bounding Rule ZDS (Zero-Duration Activity Start). A zero-duration activity may have a cost

as well as nonrenewable resource demands associated with it. It does not, however, have any

associated renewable resource demands. With the assumption that all mode costs are time constant

or time increasing, there is no benefit to delaying a zero-duration activity, either to reduce its cost

or to make it renewable resource feasible. Therefore, the algorithm does not enumerate any but the

earliest feasible start time of a zero-duration activity. Backtracking, consequently, proceeds to

enumerating any unenumerated modes of the zero-duration activity or backtracking to a previous

activity (i.e., level) in the precedence tree.

 Bounding Rule ZDS may replace Step 11 which becomes:

Backtrack by Start Time. If the duration of activity i is zero, go to Step 12. Otherwise, assign

activity i start time si = si + 1. If start time, si, is less than or equal to the late start time of

activity i (ii ls ?), go to Step 5.

Feasibility Rule NRF (Nonrenewable Resource Feasibility). Step 3 checks if there is sufficient

remaining nonrenewable resources available to schedule activity i in mode mi. A stronger bound

on the feasibility of the current mode selection, however, is to verify that the remaining available

nonrenewable resources are at least as great as the demand, not only of the current activity in its

selected mode, but also the demand of all remaining unscheduled activities in their lowest demand

modes as well. That is,

? ? NN
qi

N
qi

J

ij

N
jmqMm

N
qim QqHRrr

j
i

????? ??
?? ?? ,min ,1,1

1

.

Sprecher and Drexl (1996a: 19) show that this bounding rule can be easily implemented as a

preprocessing step. For each nonrenewable resource, q, the modes of each activity, i, are

compared to find the minimum possible usage of resource q by activity i:

? ?N
imqMm

N
iq rrmin

i?
? min for i = 1, … , J.

Then, the input data is adjusted by reducing the requirement for resource q by each mode of

activity i by the minimum possible usage of resource q by activity i:
N
iq

N
imq

N
imq rminrr ?? for i = 1, … , J, iMm ? , NQq ?

Finally, the input data is adjusted by reducing the availability of resource q by the sum of the

activities’ minimum possible requirements:

 5-21

?
?

??
J

i

N
iq

N
q

N
q rminRR

1

 for NQq ?

Therefore, bounding rule NRF is applied as Step 0a and is added between Steps 0 and 1. Step 3 is

applied as normal.

Bounding Rule NEC (Nonrenewable Expediting Resource Cost). It is possible, at any level of

the search tree, for an activity to be scheduled which is feasible as to the availability of

nonrenewable resources but which cannot lead to an improved schedule. Assume activity i is being

added to the i-1 partial schedule in mode mi and that Step 3 has determined the addition of activity

i to be nonrenewable resource feasible. It is possible, however, that nonrenewable resource

feasibility can be achieved only at the cost of some quantity of expediting resources. If the cost of

those expediting resources plus the running cost of the i-1 partial schedule exceeds the cost of the

current k-th best solution, then the addition of activity i in mode mi cannot lead to an improved

schedule. Activity i in mode mi is, therefore, rejected as an improving addition to the i-1 partial

schedule and its corresponding branch fathomed.

This bounding rule is further strengthened when applied in conjunction with Bounding Rule

NRF. If the cost of expediting resources resulting not only from the addition of activity i in mode

mi but also from the addition of the remaining unscheduled activities in their least demanding

modes is considered, fathoming of unimproving branches can occur higher in the tree and the total

search time is reduced.

Bounding Rule NEC, then, can be applied as Step 3a between Steps 3 and 4 and can be

expressed as follows:

If ? ?)(

1
,1 min,0max k

J
Kk

J

ij

N
ki

N
jmkMm

N
kim

N
ki CRrrcC

N j
i

?
??
?
?
?

??
?
?
?

???? ? ?
? ?? ?? , add activity i in mode mi.

Otherwise, go to Step 12 (i.e., fathom the current branch).

Feasibility Ru le EST (Early Start Time). The basic algorithm enumerates over the entire

GCPM start time window for each activity, relying on Step 5 to determine the generalized

precedence feasibility of each start time. In any branch of the search tree, however, the earliest

feasible start time of an activity may be explicitly determined based on the completion time of

 5-22

generalized predecessor activities which have already been scheduled. Consequently, Steps 4 and 5

may be replaced by Bounding Rule EST (call it Step 4/5) as follows:

Assign activity i the maximum of its early start time, the latest completion time of all its

predecessors, and its earliest start-start minimum lag feasible time. That is,

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?
?
?
?

?

?
?
?

?

?

?
??

?
?
?

??

?
?
?

???????

?
??

?
?
?

??

?
?
?

???????

?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

0 ifmax ,1max , max ,1max ,max

0 if1max ,max , 1max ,max ,max

min

0

min

000

min

0

min

000

**

**

i

j
i

j
i

jjm
i

j

jjm
i

i

j
i

j
i

jjm
i

j

jjm
i

imjij

djm
Cj

jij

djm
Cj

j

d
Ojjmj

d
Oji

imjij

djm
Cj

jij

djm
Cj

j

d
Ojjmj

d
Oji

i

dsssdse

dsssdse

s .

 Since all subsequently enumerated start times for any activity are minimal start time

feasible, the direction given in Step 12 to go to Step 5 may be changed to redirect to Step 6.

Feasibility Rule MD (Mode Duration). Step 6 determines if the current start time of an

activity is feasible to the maximal lags of its generalized predecessors. It also verifies that the

current start time plus duration of the activity does not exceed the project due date. Feasibility

Rule MD goes further to assure that if activity i is scheduled in mode mi at start time si, the earliest

possible finish time of the remaining unscheduled activities (in their shortest-duration modes) does

also not exceed the project due date. If any do, the current start time and later start times are

infeasible and those branches of the tree are fathomed.

Feasibility Rule MD checks if any critical path emanating from activity i results in any activity

finishing after the project due date. If so, not only can the current and future start times of activity

i in mode mi be fathomed, but the late start time of activity i can be reduced to li = si – 1 for any

modes of equal or greater duration.

To determine the critical paths emanating from activity i, the GCPM is first run to determine

the early start time of each activity. Recall that GCPM is run with the shortest-duration mode of

each activity. The (shortest-mode) duration of activity i is, then, artificially increased by one and

temporarily fixed. The GCPM is run again. Those activities whose start times have been delayed

as a result of activity i’s duration being increased are on a mode critical path from activity i (i.e.,

activity i has no free slack). It follows that any of these mode critical path activities are also

delayed if activity i’s start is delayed. To simplify the rule, however, recall that no activity can

 5-23

finish later than the terminal dummy activity, J. Therefore, it is sufficient to consider whether or

not activity J is on a mode critical path from activity i.

Bounding Rule MD, then, may be incorporated as Step 6a as follows:

Mode Duration Feasibility. Let the delay, ? , resulting from activity i being scheduled in

mode mi at start time si be defined as the difference between si and activity i’s early start time, ei,

plus the difference between the duration of activity i in mode mi and its shortest-duration mode.

? ? ? ?1iimii ddes ?????

In other words, any activity on activity i’s mode critical paths is delayed both by activity i starting

later than its early start time and by activity i being scheduled in a mode longer than its shortest-

duration mode. Therefore, activity i cannot be scheduled in mode mi at start time si if (1) activity J

is on activity i’s mode critical path and (2) the early start time of activity J plus ? exceeds the

project horizon D,

DeJ ?? ? .

Bounding Rule MC (Mode Cost). If the cost of scheduling activity i in mode mi at start time si

plus the running cost of the i-1 partial schedule exceeds the current k-th best solution, then start

time si and any later start time for activity i in mode mi leads to a dominated solution and can be

fathomed. If, in addition, the lowest mode costs of the remaining unscheduled activities are also

added, an even stronger bound can be achieved.

Recall that an activity’s mode cost is not only a function of its mode, but also of its start time.

Therefore, in a fashion similar to that for Bounding Rule MD, the GCPM is run to determine the

early start time of each activity. The early time of activity i is, then, artificially increased by one

time unit and temporarily fixed. The GCPM is run again. Those activities whose start times have

been delayed as a result of activity i’s start time being delayed are on a start time critical path

from activity i. These activities, though, are not necessarily on a mode critical path from activity i.

Therefore, Bounding Rule MC may be added as Step 6b as follows:

Define M
i? as the set of activities on a mode critical path from activity i. Define S

i? as the

set of activities on a start time critical path from activity i. Then, each unscheduled activity, j,

is in set M
i? , set S

i? , or neither set. If activity j is in neither set, ? an activity ?ji such that

M
i j

j ?? ? or S
i j

j ?? ? , even if that activity is the dummy source activity.

 5-24

Then, let ? ? ? ?1iimii
M ddes ????? be the delay for activities in set M

i? . Let ? ?ii
S es ???

be the delay for activities in set S
i? . Define corresponding delays for activities in sets M

i j ??

and S
i j ?? .

Now, compute the running cost of the i-1 partial schedule plus the cost of scheduling activity i

in mode mi at start time si plus the mode cost of the unscheduled activities in their minimum

cost mode and earliest feasible start time. If that cost is no greater than the current k-th best

solution, retain activity i in mode mi at start time si. Mathematically, if

 ? ?? ? ? ?? ????? ??
?
??

??

?
??

???

J

j
ij

M
ejmMm

J

j
ij

M
ejmMm

M
simi

S
i

S
ijj

M
i

M
ijj

ii
cccC

??
11

1 minmin ??

 ? ? ? ?)(

11

minmin k
J

J

j
ij

M
ejmMm

J

j
ij

M
ejmMm

Ccc
S
ji

S
ijjj

M
ji

M
jijj

?
??
?

??
??

??
?

??
? ??

?

?

?

?

?
??

??
?
??

??
??

?? ,

then retain the current start time. Otherwise, go to Step 12.

Bounding Rule REC (Renewable Expediting Resource Cost). As is the case with

nonrenewable resources, the addition of activity i in mode mi at start time si may be renewable

resource feasible but lead to a dominated solution. This is the case when other running costs plus

the cost of renewable expediting resources required for feasibility exceeds the value of the current

k-th best solution. Thus, a check for dominance may be added as Step 7a as follows: If

? ?)(
1

,1 ,0max k
J

Kk

ds

st

R
kti

R
kimi CRrC

R

iimi

i

i
??? ? ?

?

??

?
? ,

then the current partial schedule may lead to an improved solution. If not, go to Step 11.

If used in conjunction with Bounding Rules NEC so that the cost of nonrenewable expediting

resources and renewable expediting resources are considered, fathoming occurs even earlier. The

resulting equivalent fathoming condition would be:

 5-25

? ? ? ?)(
1

,
1

,1 ,0maxmin,0max k
J

Kk

ds

st

R
kti

R
kim

Kk

J

ij

N
ki

N
jmkMm

N
kim

N
ki CRrRrrcC

R

iimi

i

i
N j

i
???

??
?
?
?

??
?
?
?

???? ? ?? ?
?

??

?? ?? ??

Feasibility Rule MOD (Infeasible Modes). Feasibility Rule MOD tests each mode of each

activity to determine if it is feasible as to the renewable and nonrenewable resource constraints. A

mode, mi, of activity i is infeasible vis -à-vis a nonrenewable resource, qN, if the usage of qN by mi

plus the minimal usage of qN by all other activities exceeds the availability (regular plus

expediting) of qN. A mode, mi, of activity i is infeasible vis -à-vis a renewable resource, qR, if the

usage of qR by mi exceeds the availability (regular plus expediting) of qR in the time period where

the availability of qR is greatest. Note that when comparing renewable resource usage against

availability, the time period when that resource is most available must be determined. This is

required because of the assumption of nonconstant resource availability.

Feasibility Rule MOD is performed at the beginning of the search phase to eliminate infeasible

modes as soon as possible. The rule is inserted into the algorithm as Step 0b as follows: For each

mode, mi, of each activity, i, if

? ? N
q

N
q

ij

N
jmqMm

N
qim HRrr

j
i

??? ?
? ?

min

for any nonrenewable resource, qN, or if

? ?
? ?R

tq
R
tqDt

R
qim HRr

i
??

? ,1
max

for any renewable resource, qR, then mode, mi, of activity i is infeasible and eliminated from further

consideration.

Testing

Extensive testing was conducted to address a number of issues about the MRCPSP-GPR/EXP

Scheduler. These include, but are not limited to, an investigation into the computational

contribution of the optional bounding rules and a comparison of the algorithm versus a general

integer programming solution approach. Each issue is addressed separately below.

For all testing, problem instances were generated using PAGER and solved using a 750 MHz,

Pentium III processor with 256 MB of Random Access Memory (RAM). A total of 4992

problems were generated, most of which were solved in a variety of ways (i.e., using different

 5-26

combinations of bounding rules and / or alternate values of k). The total number of tests conducted

is 52,521.

Note that in some of the charts below, the term job is used in place of activity. The two terms

are intended to be equivalent and job is used simply to conserve space.

Test Problem Parameters Held Constant. A review of Chapter IV reveals an extensive list of

parameters that can be set in PAGER to generate tailor-made problem instances. Some parameters,

such as the minimum and maximum number of start or end nodes, can be altered to shape the

underlying project network. In this particular case, the parameters are set to give the most

flexibi lity to PAGER, with the minimums being set to one and the maximums set to the number of

activities in the project. This is required to assure that the network Restrictiveness parameter

controls the network structure. For example, a Restrictiveness of one leads to an end-to-end string

of activities, requiring the minimum number of start and end nodes to be one. On the other hand, a

Restrictiveness of zero produces a network where there are not temporal relationships at all

between the activities. This requires that the maximum number of start and end nodes be at least

as great as the number of activities.

Other parameters are held constant to manage the size of the experimental design. Varying

some of these parameters might produce interesting excursions to this study. The parameters held

constant throughout testing include:

?? Lower and Upper Bounds on Activity Lags: When a generalized precedence exists
between two activities, say activities i and j, then the difference between the start times of
activities i and j must be no less than their minimal lag and no greater than their maximal
lag. Minimal lags were randomly drawn from between –2 and +2 and maximal lags from
between +4 and +8. For instance, suppose the minimal lag is randomly chosen to be –1
and the maximal lag is randomly chosen to be +6. This implies that activity j may start as
early as one time period before the start of activity i or as late as 6 time periods after the
start of activity i. The choice of intervals [–2, +2] and [+4, +8] for randomly drawing
minimal and maximal lags, respectively, was arbitrary. These values were chosen simply
to give some variety to the generalized precedences, while allowing for the possibility of
concurrent activity start times.

?? Resource Demands: The number of units of a particular resource that an activity may
require was randomly drawn from between 1 and 10.

?? Project Penalty Cost: If a project is due at time t, then a project completion penalty is
assessed starting at time t+1. The penalty to be assessed at time t+1 was randomly drawn
from between 500 and 750 units. For each period beyond time t+1, the penalty assessed is
increased by some increment, randomly drawn from between 400 and 500 units. Again,
this was a matter of preference.

 5-27

?? Mode Costs: Each scheduled activity is assessed a cost which is a function of the mode
and start time. When activity modes are generated, each is assigned a baseline cost
randomly drawn from between 50 and 100 units. A mode’s baseline cost is assessed if the
activity is scheduled in that particular mode at the activity’s early start time. If the activity
is scheduled later than at its early start time, the mode’s baseline cost plus a time-
dependent incremental cost is assessed. The incremental cost associated with a mode was
also randomly drawn from between 50 and 100 units.

?? Expediting Resource Costs: If an expediting resource, either renewable or nonrenewable,
is used, an expediting resource cost is assessed. Each expediting resource is assigned a
cost randomly drawn from between 0 and 50 units.

Table 5-1 summarizes the problem parameters held constant throughout testing.

Table 5-1. Problem Generation Parameters Held Constant

Min Max
Minimal Lag -2 2
Maximal Lag 4 8
Resource Demand 1 10
Base Project Penalty 500 750
Project Penalty Increment 400 500
Base Mode Cost 50 100
Mode Cost Increment 50 100
Expediting Resource Cost 0 50

Test Problem Parameters Which Are Varied. A number of key parameters used to generate

test problems were varied throughout the testing. Some of these are parameters identified by other

researchers (e.g., Kolisch et al., 1995; Schwindt, 1996; Van Hove, 1998) as having the greatest

effect on problem difficulty. Others are key features of MRCPSP-GPR/EXP that may impact

problem difficulty. These parameters are outlined in Table 5-2. Table 5-2 does not list the values

that these parameters might take. The parameter values are, instead, introduced when each

experiment is described below.

The test designs that are introduced in this section are referred to as the full, reduced, and

minimal designs. The adjectives describing the designs are used simply to reflect their relative

scopes and to provide a convenient means of referring to them.

 5-28

Table 5-2. Parameters Which Are Varied

PARAMETER
Number of Modes Per Activity
Job Duration, Maximum
Lag Fraction
Project Network Restrictiveness
Number of Renewable/Nonrenewable Resources
Renewable/Nonrenewable Resource Factor
Regular Renewable/Nonrenewable Resource Strength
Total Renewable/Nonrenewable Resource Strength

Computational Contribution of Bounding Rules. The first experiment conducted was designed

to assess the contribution each of the eight optional bounding rules makes to solution time. Since

each rule reduces the algorithmic search space, each should, theoretically, improve overall problem

solution time. However, there is computational overhead associated with each rule. Therefore, an

experiment to determine if there is a practical contribution by the rules is essential.

Table 5-3. Reduced Test Design

PARAMETER LEVELS
Number of Modes Per Activity 1 3
Job Duration, Maximum 10 20
Lag Fraction 0.00 0.20
Project Network Restrictiveness 0.00 0.50 1.00
Number of Renewable/Nonrenewable Resources 1 3
Renewable/Nonrenewable Resource Factor 0.50 1.00
Regular Renewable/Nonrenewable Resource Strength 0.00 0.50 1.00
Total Renewable/Nonrenewable Resource Strength 1.00
Total Combinations = 288

The experiment was conducted by generating 1440 projects with five activities each using the

reduced test design in Table 5-3. The reduced design contains 288 design points. Five projects

were generated for each design point.

The projects were scheduled using the basic algorithm and, then, using each individual

bounding rule. The results, shown in Table 5-4, list the rule(s) applied, the solution times, and the

improvement in solution time offered by each rule (as a percentage of the solution time without

rules). Figure 5-1 shows the results graphically. Rule MC showed the greatest single-rule

improvement, solving problems (on average) in 0.002 of the time required by the basic solution.

 5-29

On the other hand, Rules MD, MOD, and NRF were only slightly better than solving with no rules

at all. When all the rules are combined, the solution algorithm solved the problem set in 0.001 of

the basic case solution time.

Table 5-4. Rule vs. Average Solution Time (seconds) for 5 Activities

Ave Time as
Rule Min Average Max Std Dev % of "None"

None 0 5.808 170.7 17.407 100.0%
MD 0.000 5.545 166.530 16.557 95.5%
MOD 0.000 5.493 166.110 16.452 94.6%
NRF 0.000 5.485 166.220 16.466 94.4%
EST 0.000 4.293 128.250 12.777 73.9%
ZDS 0.000 2.259 57.840 6.320 38.9%
REC 0.000 0.991 44.290 3.558 17.1%
NEC 0.000 0.497 28.050 2.169 8.6%
MC 0.000 0.009 2.330 0.087 0.2%
All 0.000 0.003 0.950 0.030 0.1%

Solution Time (seconds)

Solution Time vs. Bounding Rules

0

1

2

3

4

5

6

None MD MOD NRF EST ZDS REC NEC MC All

Bounding Rule

A
ve

. S
ol

ut
io

n
T

im
e

(s
ec

on
ds

)

Figure 5-1. Rule vs. Average Solution Time (seconds) for 5 Activities

The next step in the investigation of the bounding rules was to generate 288 ten-activity

projects, one instance for each design point. These were solved both with all rules and without

rules. A time limit of 300 seconds (5 minutes) was imposed on the solution time for each problem.

When none of the rules were applied, only 54 of the 288 problems solved to optimality within the

 5-30

time limit. By contrast, 256 problems solved to optimality within 300 seconds when all of the rules

were applied (see Table 5-5 and Figure 5-2).

Table 5-5. Rule vs. Problems Solved to Optimality (Within 300 sec.) for 10 Activities

Rule
Number of Optimal

Solutions Found
% of Total

Problems Solved
None 54 18.8%
All 256 88.9%

Bounding Rules vs. Problems Solved to
Optimality Within 300 Second Limit

0

50

100

150

200

250

300

None All
Bounding Rule

P
ro

bl
em

s
S

ol
ve

d
to

O

pt
im

al
ity

 (O
ut

 o
f 2

88
)

Figure 5-2. Rule vs. Problems Solved to Optimality (Within 300 sec.) for 10 Activities

When the number of problems solved to optimality were tallied as a function of the problem

characteristics, neither the fraction of generalized precedences, the resource factor (RF), or the

resource strength (RS) were important factors in the number of problems solved within the time

limit. However, the number of modes and the network restrictiveness (RT) were important factors.

When no bounding rules were used, only problems (54 of 144) with a single mode were solved

within the time limit (Table 5-6 and Figure 5-3). When all of the rules were used, however, 133 of

the 144 problems with a single mode (92.4%) solved to optimality within the time limit and 123 of

the 144 problems with three modes (89.6%) solved to optimality within the time limit.

 5-31

Table 5-6. Rule vs. Problems Solved to Optimality (Within 300 sec.)

for 10 Activities and Varying Modes

Rule 1 3 Total
None 54 0 54
All 133 123 256

Modes

Bounding Rules vs. Problems Solved to
Optimality Within 300 Second Limit

0

50

100

150

200

250

300

1 3 Total

Number of Modes

P
ro

bl
em

s
S

ol
ve

d
to

O

pt
im

al
ity

 (O
ut

 o
f 2

88
)

No Rules All Rules

Figure 5-3. Rule vs. Problems Solved to Optimality (Within 300 sec.)

for 10 Activities and Varying Modes

Table 5-7 and Figure 5-4 show the results for varying levels of RT. When no bounding rules

are used, almost all of the problems solved to optimality within the time limit have an RT of 1.0

(the easiest case). When all bounding rules are used, 71.9%, 94.8%, and 100% of the problems

are solved with an RT of 0.0, 0.5, and 1.0, respectively. Based on these results, the bounding rules

materially improve solution time. All further experiments use all bounding rules.

Table 5-7. Rule vs. Problems Solved to Optimality (Within 300 sec.)

for 10 Activities and Varying RT

Rule 0.0 0.5 1.0 Total
None 0 6 48 54
All 69 91 96 256

Network Restrictiveness

 5-32

Bounding Rules vs. Problems Solved to
Optimality Within 300 Second Limit

0

50

100

150

200

250

300

0.0 0.5 1.0 Total

Network Restrictiveness (RT)

P
ro

bl
em

s
S

ol
ve

d
to

O

pt
im

al
ity

 (O
ut

 o
f 2

88

No Rules All Rules

Figure 5-4. Rule vs. Problems Solved to Optimality (Within 300 sec.)

for 10 Activities and Varying RT

Comparison to Integer Programming. As previously discussed, no other specialized algorithm

for solving the MRCPSP-GPR/EXP exists in the literature, leaving only general IP solvers

available for project scheduling. This new algorithm was tested against a leading commercial IP

solver, IBM’s Optimization Solutions Library (OSL). OSL has the benefit of exploiting special

ordered sets of variables (SOS variables).

The same 1440 five-activity instances and 288 ten-activity instances used for testing the

bounding rules were used to compare the new algorithm against OSL. Of the 1440 five-activity

instances, OSL solved 1405 to completion within a 15-minute time limit. Of the remaining 35

instances (2.4%) which exceeded the maximum allowed 15 minutes of CPU time, ten were allowed

to run for 2 hours each without successfully completing. On average, the Scheduler solved the

1440 test instances in 0.002 the time it took OSL to solve the 1405 (see Table 5-8). Recall,

though, that the 1440 instances that the Scheduler solved included the 35 instances which were too

difficult for OSL to solve in 15 minutes.

 5-33

Table 5-8. Scheduler vs. OSL Solution Time (seconds) for 5 Activities

Ave Time as
Rule Min Average Max Std Dev % of "OSL"

OSL 0.03 1.71 63.74 5.89 100.0%
Scheduler 0.00 0.00 0.95 0.03 0.2%

Solution Time (seconds)

 When the Scheduler and OSL were compared against the 288 ten-activity problems

(Figure 5-9), OSL failed to solve 31 instances (10.8%) within a 12-hour time limit. Comparing the

instances OSL did solve to the Scheduler results, the Scheduler still solved the problem instances in

5.2% of the time required by OSL.

Table 5-9. Scheduler vs. OSL Solution Time (seconds) for 10 Activities

Ave Time as
Rule Min Average Max Std Dev % of "OSL"

OSL 0.10 326.72 29460.57 1957.34 100.0%
Scheduler 0.00 17.09 872.71 88.35 5.2%

Solution Time (seconds)

Taking a closer look at the Scheduler versus OSL for solving ten-activity projects, consider the

impact of RT. RT had a particular impact on the relative solution times of the Scheduler and OSL

(see Table 5-10 and Figure 5-5). The higher the Restrictiveness (the easier the underlying

network), the more the Scheduler improved solution time. For totally unrestricted networks (RT =

0.0), the Scheduler was only about three times as fast as OSL. For increasingly restricted

networks, the Scheduler considerably decreases solution time. The results of this analysis confirm

the literature that general IP solvers are not usually as efficient solving project scheduling problems

as specialized algorithms.

Table 5-10. Scheduler vs. OSL Improvement by Restrictiveness for 10 Activities

RT OSL Sub Improvement
0.0 131.260 44.252 0.337
0.5 188.008 13.379 0.071
1.0 698.890 0.017 0.000

Total 326.723 17.085 0.052

 5-34

Scheduler vs. OSL Improvement by
Restrictiveness

0.000

0.200

0.400

0.600

0.800

1.000

1.200

0.0 0.5 1.0 Overall

Restrictiveness

Fr
ac

tio
n

of
 O

S
L

S
ol

n
T

im
e

Scheduler OSL

Figure 5-5. Scheduler vs. OSL Improvement by Restrictiveness for 10 Activities

Solution Results vs. Key Parameters. Attention now turns to the question of how key

parameters affect solution results. To answer this question, the full test design in Table 5-11 was

used.

Table 5-11. Full Test Design

PARAMETER
Number of Modes Per Activity 1 3
Job Duration, Maximum 10 20
Lag Fraction 0.00 0.20
Project Network Restrictiveness 0.00 0.25 0.50 0.75 1.00
Number of Renewable/Nonrenewable Resources 1 3
Renewable/Nonrenewable Resource Factor 0.50 1.00
Regular Renewable/Nonrenewable Resource Strength 0.00 0.50 1.00
Total Renewable/Nonrenewable Resource Strength 0.00 0.50 1.00
Total Combinations = 960

LEVELS

One problem instance was generated at each of the 960 design points for projects with 10, 20,

and 30 activities. Additionally, one instance at each of the 576 design points in the minimal test

design (Figure 5-12) was generated for projects with 50 activities.

 5-35

Table 5-12. Minimal Test Design

PARAMETER LEVELS
Number of Modes Per Activity 1 3
Job Duration, Maximum 10 20
Lag Fraction 0.00 0.20
Project Network Restrictiveness 0.00 0.50 1.00
Number of Renewable/Nonrenewable Resources 1 3
Renewable/Nonrenewable Resource Factor 0.50 1.00
Regular Renewable/Nonrenewable Resource Strength 0.50 1.00
Total Renewable/Nonrenewable Resource Strength 0.00 0.50 1.00
Total Combinations = 576

Each of the problem instances was solved using the Scheduler with a maximum time limit of

20 seconds. Since the objective of this experiment was to take a broad view of solvability as a

function of key parameters, the 20-second time limit was selected to control the total time required

to solve the 3456 test problems. Table 5-13 shows the overall results, listing the number of

problem instances which were infeasible, the number which exceeded the 20-second time limit, and

the number solved to optimality. Figures 5-6 and 5-7, chart the number of occurrences and relative

percentage of each result, respectively. The reason for these results was investigated further.

Table 5-13. Solution Results

RESULT 10 20 30 50 10 20 30 50 Total
Infeasible 85 134 156 97 8.9% 14.0% 16.3% 16.8% 472
Over 20s Limit 203 429 515 330 21.1% 44.7% 53.6% 57.3% 1477
Optimal 672 397 289 149 70.0% 41.4% 30.1% 25.9% 1507
Total 960 960 960 576 100.0% 100.0% 100.0% 100.0% 3456

JOBSJOBS

Consider first the infeasible problems. Though an in-depth discussion of the infeasible

problems has little bearing on the effectiveness of the Scheduler, it does provide worthwhile

insights into the nature of the MRCPSP-GPR/EXP.

Kolisch et al. (1995) report that a low availability of resources can lead to infeasible problem

generation. The results in Table 5-14 confirm this conclusion, where a RS (regular plus

expediting) of zero accounts for 68% of infeasible problems overall and an RS of 0.50 accounts for

32%.

 5-36

Solution Result vs. Number of Activities

0

200

400

600

800

1000

10 20 30 50

Number of Activ ities

N
um

be
r

of
 O

cc
ur

en
ce

s

Infeasible
Over 20s Limit
Optimal

Figure 5-6. Solution Results as Occurrences

Solution Result vs. Number of Activities

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

10 20 30 50

Number of Activities

P
er

ce
nt

 o
f O

cc
ur

en
ce

s

Infeasible
Over 20s Limit
Optimal

Figure 5-7. Solution Results as Percentages

 5-37

Table 5-14. Infeasible Problems

RS 10 20 30 50 Total Percent
0.0 70 94 99 59 322 68.22%
0.5 15 40 57 38 150 31.78%
1.0 0 0 0 0 0 0.00%

Total 85 134 156 97 472 100.00%

Activities

Figure 5-8 shows the percentage of infeasibilities accountable to each level of RS for activities

of different size.

Infeasibility vs. Resource Strength
(Total RS = Regular RS + Expediting RS)

0%

20%

40%

60%

80%

100%

10 20 30 50
Number of Activities

%
 o

f I
nf

ea
si

bl
e

P
ro

je
ct

s

RS = 1.0

RS = 0.5

RS = 0.0

Figure 5-8. Infeasible Problems vs. Resource Strength

The increase in the number of infeasible problems as a function of RS is compounded by both

the number of modes in the project and the percent of activities with generalized precedence. Table

5-15 shows that three-mode projects account for 65% of the infeasibilities, while single-mode

projects account for only 35 %. When modes and RS are considered together, three-mode projects

with a RS of zero account for 51% of the infeasibilities. Figure 5-9 also depicts the relationship of

RS and mode in infeasibilities. Note that the chart includes all infeasible instances; therefore, the

sum of the two columns adds to 100%.

 5-38

Table 5-15. Infeasibilities by RS and Mode

RS 1 3 1 3 Total Percent
0.00 81 241 17.2% 51.1% 322 68.22%
0.50 83 67 17.6% 14.2% 150 31.78%
1.00 0 0 0.0% 0.0% 0 0.00%

Total 164 308 34.7% 65.3% 472 100.00%

MODES MODES

Infeasibility vs. Resource Strength & Modes
(Total RS = Regular RS + Expediting RS)

17.2%

51.1%17.6%

14.2%

0%

20%

40%

60%

80%

100%

1 3
Modes Per Activity

%
 o

f I
nf

ea
si

bl
e

P
ro

je
ct

s

RS = 1.0

RS = 0.5

RS = 0.0

Figure 5-9. Infeasible Problems vs. RS and Mode

Table 5-16 shows that projects in which 20% of the activities have generalized precedence

account for 76% of the infeasibilities, while projects with only standard finish-start precedence

account for only 24%. When generalized precedence and RS are considered together, problems

where 20% of activities have generalized precedence and where RS is zero account for 45% of the

infeasibilities (depicted also in Figure 5-10).

Table 5-16. Infeasibilities by RS and Percent of Activities with Generalized Precedence (GPR)

RS 0% 20% 0% 20% Total Percent
0.00 108 214 22.9% 45.3% 322 68.22%
0.50 5 145 1.1% 30.7% 150 31.78%
1.00 0 0 0.0% 0.0% 0 0.00%

Total 113 359 23.9% 76.1% 472 100.00%

GPR % GPR %

 5-39

Infeasibility vs. Resource Strength & Gen Prec
(Total RS = Regular RS + Expediting RS)

22.9%

45.3%
1.1%

30.7%

0%

20%

40%

60%

80%

100%

0% 20%
% of Activities with Generalized Precedence

%
 o

f I
nf

ea
si

bl
e

P
ro

je
ct

s

RS = 1.0

RS = 0.5

RS = 0.0

Figure 5-10. Infeasibilities vs. RS and Percent of Activities with GPR

Consider, next, the problems which are not solved within the 20-second time limit. Figure 5-

11 shows the total number of problems which exceeded the 20-second time limit versus network

Restrictiveness. Since the total number of feasible problems was different for each project size, the

same data is presented in Figure 5-12, standardized as the percentage of problems exceeding the

time limit attributable to each level of RT. Note that Restrictiveness does not appear to play as

important a role as it did in the number of problems which were infeasible. As the number of

activities in the problem increases, so does the percent of problems with an RT of 1.0 exceeding the

time limit. However, the percentages attributable to the other levels of RT remain fairly

proportional in relation to each other. For example, going from problems with 20 activities to

those with 30 activities shows that of the problems which exceed the 20-second limit, the percent

attributable to an RT of 1.0 increases from 6.1% to 8.5%. Although the percentage attributable to

an RT of 1.0 reduces the absolute percentages attributable to the other RT levels, an RT of 0.25

still attributes between 64-69% of what an RT of 0.0 attributes, an RT of 0.5 still attributes

between 63-70% of what an RT of 0.0 attributes, and an RT of 0.75 still attributes between

58-64% of what an RT of 0.0 attributes.

 5-40

Projects Exceeding 20-Sec. Limit vs. Restrictiveness

0

100

200

300

400

500

600

10 20 30 50
Number of Activities

of

 P
ro

je
ct

s
E

xc
ee

di
ng

 2
0s

 L
im

it

1.00
0.75
0.50
0.25
0.00

Figure 5-11. Solution Time Exceeding 20 Seconds vs. Restrictiveness (Occurrences)

% of Problems Exceeding 20-Second Limit by Restrictiveness

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

10 20 30 50

Number of Activities

%
 o

f F
ea

si
bl

e
P

ro
bl

em
s

E
xc

ee
di

ng
 2

0s

Li
m

it

1.00

0.75

0.50

0.25

0.00

Figure 5-12. Solution Time Exceeding 20 Seconds vs. Restrictiveness (Percentages)

 5-41

Though restrictiveness is only moderately important to the number of activities which do not

solve in the 20-second time limit, resource strength is a significant factor. Figure 5-13 shows the

percentage of feasible problems which exceed the time limit versus RS. The x-axis is divided by

the RS of regular resources, with multi-shaded columns representing the different levels of RS of

expediting resources (ERS). There are a total of six columns representing the combinations of

regular and expediting resources. Problems were generated to have a total RS of at most 1.0.

Therefore, there is no column corresponding to an ERS of 1.0 when the RS is 0.5 or 1.0. Nor is

there a column corresponding to an ERS of 0.5 when RS equals 1.0.

Feasible Problems Exceeding 20 Seconds vs. RS

0%

20%

40%

60%

80%

100%

RS = 0.0 RS = 0.5 RS = 1.0

Regular Resource Strength

%
 o

f P
ro

bl
em

s
E

xc
ee

di
ng

 2
0-

S
ec

 L
im

it

ERS = 0.00

ERS = 0.5

ERS = 1.0

Figure 5-13. Solution Time Exceeding 20 Seconds vs. RS

Note that when the regular RS is 0.0, the impact of expediting RS is negligible, with roughly

the same percentage of problems exceeding the time limit. On the other hand, when RS = 0.5,

including additional resources improved to some degree the number of problems which were solved

within the time limit. This effect is likely a result of the way the Scheduler enumerates solutions.

Recall that the Scheduler attempts first to schedule activities at their early start times and then at

 5-42

progressively later times. The existence of expediting resources generally makes more time-

compressed schedules feasible. Since the more time-compressed schedules are enumerated early

on, if the cost savings from a shorter project outweighs the cost of the expediting resources, the

schedules found early on provide tighter bounds on the optimal solution and, thus, allows quicker

fathoming of unproductive partial schedules. Quicker fathoming, in turn, leads to faster

completion of the algorithm. Finally, most problems with an RS = 1.0, the easiest of the problems,

can be solved within the time limit.

Consider the feasible problems which are solved within the 20-second time limit. Figure 5-14

shows the relative solvability of the levels in each of the two-level factors. The x-axis shows the

two-level factors: modes, duration (Dur), number of renewable / nonrenewable resources (#Res),

resource factor (RF), and percent of activities with GPR (Lag%). Along with the factors are listed

both levels: respectively termed the 1st level and the 2nd level. The y-axis shows the number of

problems solved to optimality as a ratio of the 1st factor to the 2nd factor. The columns represent

problems with 10, 20, 30, and 50 activities each.

Problems Solved by 2-Level Factors

0.00

0.20

0.40

0.60

0.80

1.00

Mode: 3 / 1 Dur: 20 / 10 #Res: 3 / 1 RF: 1 / 0.5 Lag%: 20 / 0

Factor: 1st Level / 2nd Level

R
at

io
 o

f P
ro

bl
em

s
S

ol
ve

d
at

 1
st

Le

ve
l t

o
2n

d
Le

ve
l

Jobs = 10 20 30 50

Figure 5-14. Problems Solved by 2-Level Factors

As an example, consider the number of modes per activity. An activity may have either three

modes (the 1st level) or one mode (the 2nd level). Focusing just on problems with ten activities,

 5-43

note that the light gray column above the label Mode: 3 / 1 indicates a value of 0.83. This value

reflects that the number of ten-activity problems solved to optimality in which each activity has

three modes is 83% of the number of problems solved in which activities have only one mode.

Hence, problems with ten activities and three modes per activity are somewhat more difficult than

similar problems with only one mode per activity. This is really no surprise since the size of the

problems grows as the number of modes per activity increases.

Having reviewed the chart, note that modes per activity is the most clearly influential two-level

factor on the ability to solve problems. As problem size (i.e., activities) increases, the impact of

modes also increases. Trends in the other factors are not quite so clear, but it is evident that all of

the factor levels identified as the 1st level are at least more difficult than levels identified as the 2nd

level. This is not surprising since the 1st and 2nd levels were identified so that the theoretically

more difficult level was the first level; thus, maintaining ratios below 1.0.

Feasible Problems Solved Versus Restrictiveness

0%

20%

40%

60%

80%

100%

10 20 30 50
Number of Activities

%
 o

f P
ro

bl
em

s
S

ol
ve

d

RT = 0.00

RT = 0.25

RT = 0.50

RT = 0.75

RT = 1.00

Figure 5-15. Problems Solved Versus Restrictiveness

Turning now to the factors with more than two levels, Figure 5-15 shows a very clear trend in

the impact of network restrictiveness on the percentage of feasible problems solved within the 20-

second time limit. As RT increases (i.e., the network structure becomes more constrained), the

percentage of problems solved increases as well. The Scheduler performed very well on problems

 5-44

with relatively high RT values, even for the problems with 50 activities. An RT of 0.0, by

contrast, makes a problem much more difficult and relatively few of these problems (especially in

projects with over ten activities) solved to optimality within 20 seconds.

An analysis of resource strengths also provides some interesting insights (see Figure 5-16).

The easiest problems are those with a regular RS of 1.0. These are problems where enough free

(i.e., no cost) resources are available to schedule every activity at its early start time (the GCPM

schedule). For problems with ten activities, there is a near linear increase in the percentage of

problems solved as regular RS increases. For any level of RS, the percentage of problems solved

also increases in near-linear fashion for increasing ERS.

Feasible Problems Solved Versus RS (Reg, Exp)

0%

20%

40%

60%

80%

100%

10 20 30 50

Number of Activities

%
 o

f P
ro

bl
em

s
S

ol
ve

d

(0.0, 0.0)

(0.0, 0.5)

(0.0, 1.0)

(0.5, 0.0)

(0.5, 0.5)

(1.0, 0.0)

Figure 5-16. Problems Solved Versus Resource Strength

For problems with more than ten activities, a different phenomenon presents itself. While the

above observations (those of increasing RS yielding an increasing percentage of problems solved)

hold true for resource strengths of 0.5 and 1.0, this is not the case for RS of 0.0. When the RS is

0.0, an ERS of 0.5 provides fewer solved problems than an ERS of 0.0. This is contrary to the

aforementioned trends. This apparent aberration may be explained by the tradeoff between

computational overhead and upper bounding of the solution. The more expediting resources the

Scheduler has to trade, the more overhead required to account for resources and their costs. Thus,

given some fixed RS, the problems solved should decrease as ERS increases. On the other hand,

 5-45

the Scheduler searches for schedules beginning with earlier activity start times and continuing to

progressively later start times. When ERS is high, more schedules with relatively early start times

become feasible, allowing for a good upper bound on the objective function to be found early in the

search. The upper bound allows faster fathoming of unproductive partial schedules, resulting in

faster solution times. Thus, given some fixed RS, the problems solved should increase as ERS

increases. Characteristics of the problem itself and of the Scheduler may be driving solution time,

and consequently the number of problems solved, in opposing directions. Defining this tradeoff in

greater detail may be worth further investigation.

Solution Time. Having reviewed the impact of key parameters on the problem results (i.e.,

feasibility and tractability, defined as solvable in 20 seconds or less), consider now in more detail

the solution times required by the Scheduler. A discussion of those problems which were solved in

20 seconds or less is provided first. Results are, then, reported on a subset of problems which were

allowed to solve without time limit. The same test set used in the previous subsection is used here.

Figures 5-17, 5-18, and 5-19 show the cumulative number of feasible problems solved, broken

out by time bin. The x-axis shows the time bins, which are 0.01, 0.1, 1, 10, and 20 seconds. If the

time bins were labeled T1 through T5, respectively, then a problem falls into time bin, Ti, if it took

longer than Ti-1 to solve but no more than Ti. For instance, a problem which took 0.06 seconds to

solve falls into time bin T2, 0.1.

Figure 5-17 presents the cumulative number of feasible problems solved by number of project

activities (or jobs), Figure 5-18 by RT, and Figure 5-19 by RS. The most noteworthy observation

is that, in most cases, the number of problems solved in the first 0.01 seconds comprises at least

50% of all problems solved in 20 seconds or less. For example, note in Figure 5-17 that for

problems with 10 activities, 77% of problems solved within the 20-second time limit, while 48% of

problems solved within 0.01 second. Therefore, 62% of problems which solved within the 20-

second time limit did, in fact, solve within 0.01 second. Some insights into this result are provided

in the next subsection.

Table 5-17 shows solutions times for a subset of 10- and 50-activity projects where no time

limit was imposed. The subsets come from the problems which previously required more than 20

seconds to solve. A total of 146 problems with 10 activities were solved to optimality. As

reported above, 203 problems exceeded the previous 20-second time limit. A few of the most

difficult of these problems were not solved to optimality in this experiment due to the excessive

 5-46

solution time. One of these problems, a problem with three modes per activity, an RT of 0.0, three

renewable and three nonrenewable resources, an RF of 1.0, an RS of 0.0, and an ERS of 1.0, was

terminated without completion after 302,800 seconds (over 84 hours). Problems of similar

difficulty were, therefore, not attempted. In all cases, the problems expected to take a similarly

long time to solve had an RT of 0.0 (a totally unconstrained network), an RF of 1.0 (every activity

requiring every resource), and an RS of 0.0 (so few regularly available resources as to eliminate

the possibility of scheduling any two activities to be in progress at the same time without incurring

an expediting resource cost, provided any expediting resources were even available).

Cumulative Problems Solved by Time Bin / Jobs

0%

20%

40%

60%

80%

100%

0.01 0.1 1 10 20
Time Bin (seconds)

%
 o

f F
ea

si
bl

e
P

ro
bs

 S
ol

ve
d

B
ef

or
e/

In
 T

im
e

B
in

Jobs = 10

Jobs = 20

Jobs = 30

Jobs = 50

Figure 5-17. Cumulative Problems Solved by Time Bin and Jobs

Of the 10-activity problems solved to optimality, the average solution time was just over 32

minutes, with a minimum time of 20.2 seconds and a maximum time of just over 19 hours.

Twenty-three of the 146 problems required longer than the average solution time.

Two projects with 50 activities were also solved to optimality. Both problems had three modes

per activity, an RT of 0.5, three renewable and three nonrenewable resources, and an RF of 0.5.

The problems differed only in their resource strengths. One problem had an RS of 1.0 with an

ERS of 0.0 (no expediting resources, but sufficient regular resources to schedule all activities at

their early start time). This problem required 88.2 seconds to solve. The other problem had an RS

 5-47

and an ERS both equal to 0.5. This problem required 10,994.7 seconds (a little over 3 hours) to

solve to optimality.

Cumulative Problems Solved by Time Bins / RT

0%

20%

40%

60%

80%

100%

0.01 0.1 1 10 20

Time Bin (seconds)

%
 o

f F
ea

si
bl

e
P

ro
bs

S

ol
ve

d
B

ef
or

e/
In

 T
im

e
B

in

RT = 1.00

RT = 0.75

RT = 0.50

RT = 0.25

RT = 0.00

Figure 5-18. Cumulative Problems Solved by Time Bin and RT

Cumulative Problems Solved by Time Bins / RS

0%

20%

40%

60%

80%

100%

0.01 0.1 1 10 20
Time Bin (seconds)

%
 o

f F
ea

si
bl

e
P

ro
bl

em
s

S
ol

ve
d

B
ef

or
e/

In
 T

im
e

B
in

(1.0, 0.0)

(0.5, 0.5)

(0.5, 0.0)

(0.0, 1.0)

(0.0, 0.5)

(0.0, 0.0)

Figure 5-19. Cumulative Problems Solved by Time Bin and RS

 5-48

Table 5-17. Solution Time for 10- and 50-Activity Projects

Activities Count Min Average Max Std Dev
10 146 20.2 1920.6 69356.2 7495.4
50 2 88.2 5541.5 10994.7 5453.2

Solution Time (seconds)

Time to Optimal Solution. In the previous subsection, it was shown that generally more than

half of all problems solved within the 20-second time limit were, in fact, solved within the first 0.01

second. This result is understood by focusing on the time it took for the Scheduler to find an

optimal solution compared to the time it took to complete the solution process. As each problem

was solved, any time the Scheduler found a solution better than the incumbent best solution, the

time this solution was found was recorded. When the solution process was completed, then, not

only was the total solution time reported, but the time required to find the optimal solution was also

reported. The difference between the time for the entire solution process and the time to find the

optimal, therefore, is the time required to verify that the optimal is indeed optimal. Ideally, any

enumeration scheme finds a good solution, or upper bound, early in the process to enable quicker

fathoming of unproductive branches. No upper bound is better, of course, than an optimal

solution.

The x-axis of Figure 5-20 is divided into the completion time bins used previously (i.e., the

time bins used to divide the completion times, not the times to optimal). For the set of problems

completing within each of the completion time bins, the times it took to find an optimal solution to

each problem in the set were averaged. These averages are reflected on the y-axis. For instance,

for problems with ten activities which took at least ten seconds to solve but no more than 20, an

optimal solution was found, on average, in just under six seconds.

The results in Figure 5-20 are not the most revealing, however. If the time required to find an

optimal solution are also binned and, then, compared to the completion time bins, a much clearer

picture is presented. Figure 5-21 presents this picture. Note that for the vast majority of

problems, an optimal solution was found in no more than 0.01 second. In some cases, though, it

still took up to 20 seconds to complete the algorithm.

 5-49

Average Time to Optimal vs. Completion Time Bin

0

1

2

3

4

5

6

7

8

0.01 0.1 1 10 20
Completion Time Bin (seconds)

A
ve

ra
ge

 T
im

e
to

 O
pt

im
al

(s

ec
on

ds
) 10

20

30

50

Figure 5-20. Average Time to Optimal Versus Completion Time Bin

0.01 0.1
1 10

20

0.01
0.1
1
10
20

0
100
200
300
400
500

600
700

800

900

Time Bin to Optimal
(seconds)

Time Bin to
Completion
(seconds)

Optimal Time Bin vs. Completion Time Bin

Figure 5-21. Optimal Time Bin Versus Completion Time Bin

Figure 5-22 presents the data in another way, showing the time bins to optimal for the different

size problems (i.e., number of activities). As expected, the smaller the problem, the sooner the

Scheduler can be expected to find an optimal.

 5-50

Problems Solved vs. Time Bin to Optimal

0

100

200

300

400

500

600

0.01 0.1 1 10 20

Tim Bin to Optimal (seconds)

P

ro
bl

em
s

S
ol

ve
d

Jobs = 10

Jobs = 20

Jobs = 30

Jobs = 50

Figure 5-22. Problems Solved Versus Completion Time Bin

Taking a look at the time to find an optimal solution versus RT (Figure 5-23) shows that, as

expected, the higher the RT (and, hence, the easier the problem), the sooner the Scheduler is

expected to find an optimal.

Problems Solved vs. Time Bin to Optimal by RT

0

100

200

300

400

500

600

0.01 0.1 1 10 20

Time Bin to Optimal (seconds)

P

ro
bl

em
s

S
ol

ve
d

RT = 1.00

RT = 0.75

RT = 0.50

RT = 0.25

RT = 0.00

Figure 5-23. Problems Solved Versus Completion Time Bin by RT

 5-51

Finally, the time to find an optimal solution can be compared to the RS (Figure 5-24). Most

noteworthy, here, is that the Scheduler finds more optimal solutions in 0.01 second when (RS,

ERS) equals (0.0, 1.0) than it equals (0.5, 0.0). One might expect the overhead associated with

accounting for expediting resources to significantly slow down the solution process. As seen

before, though, this overhead is overcome by the degree to which the expediting resources enable

schedules with early start times, and their relatively good objective function values, to be feasible.

It could be speculated that changing the costs of activity modes (which are start time dependent)

relative to the cost of expediting resources might change this balance and lead to somewhat

different results. An investigation into this hypotheses is outside the scope of this study, but may

be worth future consideration.

Probs Solved vs. Time Bin to Opt by (RS, ERS)

0

50

100

150

200

250

300

350

400

450

0.01 0.1 1 10 20
Time Bin to Optimal (seconds)

P

ro
bl

em
 S

ol
ve

d (0.0, 0.0)

(0.0, 0.5)

(0.0, 1.0)

(0.5, 0.0)

(0.5, 0.5)

(1.0, 0.0)

Figure 5-24. Problems Solved Versus Completion Time Bin by RS

Returning to the 10-activity problems solved to optimality without time limit reveals that, on

average, the optimal was found in the first 33.3% of the solution time and that the remaining

66.7% of the time was spent verifying the optimal (see Table 5-18). Noteworthy is that for the 10-

activity problem which took the longest to solve (about 19 hours), an optimal solution was actually

found in the first 0.04 seconds.

 5-52

Table 5-18. Time to Optimal (10-Activity Projects)

Activities Min Average Max Std Dev
10 0.0% 33.3% 100.0% 34.4%

Time to Optimal (% of Total Solution Time)

.

Turning to the 50-activity problems shows that the problem which solved in 88.2 seconds

required 74.9 seconds to find an optimal (84.9% of solution time) while the problem which solved

in 10,994.7 seconds (around 3 hours) required 3982.3 seconds (around an hour) to find an optimal

(only 36.2% of solution time).

Completion Time vs. k. The scheduling algorithm developed in this chapter is used to solve the

subproblems of the decomposition approach discussed in the next chapter. For the decomposition

approach to work, each subproblem (or project) must be solved to find the k-best schedules for that

project. Besides finding the k-best schedules for purposes of the decomposition algorithm, a

scheduler may be interested in the k-best simply to be able to present alternatives to a decision-

maker.

To assess the impact on solution time of the choice of k, the test set used above (with 10-, 20-,

30-, and 50-activity projects) was solved again for varying values of k. To do so, the problems

which were solved within the 20-second time limit imposed above were resolved to find the 10,

100, and 1000 best solutions. Since it is reasonable to expect that the Scheduler should take longer

to track a higher number of best solutions, the imposed solution time limit was increased to 60

seconds. Table 5-19 and Figure 5-25 show that for all values of k, most problems were solved

within the 60-second time limit.

Table 5-19. Problem Solution Results for k=1, 10, 100, 1000

1 10 100 1000 Total
Exceeds Limit 0 1 19 70 1567
Optimal 1507 1506 1488 1437 5938
Total 1507 1507 1507 1507 7505

k -best Solutions

Reviewing a few fundamental statistics related to the solution time reveals (in Figure 5-26) that

while the maximum time required to solve the problems approaches the 60-second limit (especially

 5-53

for k = 100, 1000), the average completion times were relatively low (under seven seconds).

Figure 5-26 also shows the average time to find an optimal.

Problem Solution Results for k=1, 10, 100, 1000
(Limit = 20s for k=1 / 60s Otherwise)

0

200

400

600

800

1000

1200

1400

1600

1 10 100 1000

Best Solutions (k)

P

ro
bl

em
s

Exceeds Limit

Optimal

Figure 5-25. Problem Solution Results for k=1, 10, 100, 1000

Solution Time Statistics for k=1, 10, 100, 1000

0

10

20

30

40

50

60

70

1 10 100 1000
Best Solutions (k)

T
im

e
(s

ec
on

ds
)

Max to Comp

Ave to Comp

Ave to Optimal

Min to Comp

Figure 5-26. Solution Time Statistics for k=1, 10, 100, 1000

 5-54

The average time to completion is shown in Figure 5-27, this time, breaking completion time

out by the number of activities in the project.

Average Completion Time vs. k

0

1

2

3

4

5

6

7

1 10 100 1000

Best Solutions (k)

A
ve

ra
ge

 T
im

e
to

 C
om

pl
et

io
n

(s
ec

on
ds

)

Jobs = 10

Jobs = 20

Jobs = 30

Jobs = 50

Figure 5-27. Average Completion Time vs. k

While the time to complete the solution process increases as k increases, the average time

required per solution found drops off dramatically (Figure 5-28). This result suggests that the

marginal cost (in terms of solution time) of increasing k gets very small as k get larger. The

implication of this finding (to be addressed in greater detail in the next chapter) is that if one wishes

to evaluate the set of k-best solutions to find a solution with certain properties (e.g., feasibility in

the decomposition approach), it may be better to generate a greater number of solutions initially,

than to risk having to resolve the problem if the intial set does not include a solution with the

desired properties.

Figure 5-29 shows the overall average solution time and overall average time to find an

optimal solution versus k. In this figure, however, the x-axis is scaled proportional to k.

Consequently, the nature of the time versus k relationship can be better viewed and predictions can

be made about the expected solution time for other values of k, k < 1000.

 5-55

Average Time Per Solution

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 10 100 1000

Best Solutions (k)

A
ve

ra
ge

 T
im

e
P

er
 S

ol
ut

io
n

(s
ec

on
ds

)
Jobs = 10

Jobs = 20

Jobs = 30

Jobs = 50

Figure 5-28. Average Time Per Solution

Overall Average Solution Times vs. k

0

1

2

3

4

5

6

0 200 400 600 800 1000

Best Solutions (k)

A
ve

ra
ge

 T
im

e
(s

ec
on

ds
)

Ave to Completion Ave to Optimal

Figure 5-29. Overall Average Solution Times Versus k

Summary and Conclusions.

In this chapter, the literature was reviewed for solution approaches applicable to the

MRCPSP-GPR/EXP. Two approaches, integer programming and an implicit enumeration scheme

 5-56

by Talbot (1982), were identified for their potential as either a direct approach for solving the

MRCPSP-GPR/EXP or as a basis which could be extended for the MRCPSP-GPR/EXP.

The algorithm by Talbot was extended to incorporate the characteristics of generalized

precedence and the availability of expediting resources. Additional bounding rules to increase the

speed of the algorithm were presented.

The resulting Scheduler was tested to (1) evaluate the computational contribution of the

bounding rules; (2) assess the speed of the Scheduler versus a commercially available IP solver; (3)

evaluate the problem characteristics which most impact solution time; (4) investigate how early in

the solution process the optimal solution is actually enumerated; and (5) assess the impact on

solution time of solving a problem to find k-best solutions for varying values of k.

The results of testing were positive. The Scheduler is the first specialized algorithm capable of

solving the single-project MRCPSP-GPR/EXP and its completion times were favorable compared

to the commercial IP solver. The solution times required by the Scheduler for finding k-best

solutions appear to grow slowly enough to make the Scheduler an appropriate solver for the

subproblems in the decomposition approach presented in Chapter VI.

 6-1

VI. Multi-Project Scheduling Through Decomposition

Overview

The Multi-Modal, Resource-Constrained, Multi-Project Scheduling Problem with Generalized

Precedence and Expediting Resources (MRCMPSP-GPR/EXP) concerns scheduling a

hierarchically structured, multi-project program. At the lower level of the hierarchy are P projects.

Each project is composed of a set of multi-modal activities which are related by generalized

precedence and which compete for limited renewable and nonrenewable project-level resources.

Project-level resources are wholly controlled and allocated by the project. Each activity in a

project may, in addition, require some quantity of limited renewable and nonrenewable resources

which are common to the projects (program-level resources). Project activities may also be related

through generalized precedence to activities in other projects.

At the upper level of the hierarchy is the program, which controls and allocates the program-

level resources (or those resources common to the projects) and which deconflicts any activity start

times that violate the program-level generalized precedences. The objective of the problem is to

minimize total program costs, which may, in some cases, result in schedules which would be

suboptimal at the project-level if the projects had been treated as independent problems, free of

program-level considerations.

The MRCMPSP-GPR/EXP could be modeled and solved as a single super project using the

approach developed in Chapter V. However, as the size of the program increases, so does the

difficulty in scheduling a program as a single super project. Decomposition of related multi-

project problems, by contrast, has proven to be a successful approach for dividing and conquering

such problems (e.g., Deckro et al., 1991; Van Hove, 1998). The decomposition of multi-project

programs also lends itself to valuable economic interpretations, such as those proposed by Baumol

and Fabian (1964) and Lasdon (1970).

The approach developed in this chapter decomposes the multi-project MRCMPSP-GPR/EXP

into a number of smaller, independent subproblems (the individual projects) and a single master

problem (the program). The master problem adjudicates the competing demands of the

subproblems, which include the requirements for common resources and time slots in which to

schedule activities.

 6-2

Each subproblem is solved to find a set consisting of the k-best solutions (in terms of objective

function value) to that problem. When all of the subproblems have been solved, the sets of best

solutions are passed up to the master problem which attempts to identify one solution from each

subproblem, the combination of which is feasible and optimal to the original problem. Chapter V

developed a specialized algorithm for generating the k-best solutions for the subproblems. This

chapter focuses on the mechanics of the multi-project decomposition and on solving the master

problem.

As with the subproblems, the approach for solving the master problem permits the generation

of k-best solutions to the master problem. As presented in Theorem 6-1, under certain conditions

an optimal solution to the master problem is optimal to the original problem. Other than the

optimal solution, however, the k-best master problem solutions are not necessarily the k-best

solutions to the original problem. It is possible to set k = 1 to find only one optimal solution, if

desired.

The basic decomposition algorithm is first presented, followed by a number of acceleration

schemes. Comprehensive testing, which focuses on issues such as the benefit of the acceleration

schemes and the speed of the decomposition algorithm versus solving the problem as a single

project using the algorithm developed in Chapter V, is then detailed.

Decomposition Approaches in the Literature

One of the earlier decomposition approaches in the literature came from the work of Dantzig

and Wolfe (1960). Dantzig and Wolfe developed a decomposition approach for linear

programming (LP) which exploits the block-angular structure exhibited by many problems to

subdivide the problem into smaller subproblems that can be solved independently. A master

problem coordinates the solution process through Lagrangian multipliers which act as prices

charged to the subproblems for the use of resources that are common to the subproblems. The

master problem searches for the optimal mix (convex combination) of subproblem solutions that is

optimal to the original problem.

The Dantzig and Wolfe decomposition approach has been used successfully by Wiley (1996)

and Wiley et al. (1998) for the Multi-Project Scheduling Problem (MPSP). The objective of the

MPSP is to minimize the cost or duration of a multi-project program by crashing or extending

some of its activities. However, activity crashing is tied to specific limited resources. That is, for

every time period an activity is crashed, an additional amount of each resource is consumed. Since

 6-3

these resources are limited, so is the amount of crashing possible. The MPSP addresses the multi-

project problem at a high enough level of aggregation that the variables can be assumed to be

continuous. (The continuity of variables is a basic assumption of Dantzig-Wolfe Decomposition.)

As a result, the Dantzig-Wolfe Decomposition approach for the MPSP has limited direct

applicability to the MRCMPSP-GPR/EXP where the mathematical programming formulation

dictates the use of zero-one variables. Nevertheless, their use of decomposition for multi-project

scheduling is one of the few in the literature and adds to the theoretical basis upon which

decomposition methodologies, in general, are built.

Sweeney and Murphy (1979) present a decomposition principle which is similar to Dantzig-

Wolfe decomposition in that it exploits the block-angular structure of large problems to decompose

them into a set of smaller, easier-to-solve problems. The main difference is that Sweeney-Murphy

Decomposition, relying on the principle of Lagrangian relaxation, is designed for problems with

integer variables, while Dantzig-Wolfe Decomposition assumes continuous, linear variables. The

subproblems are solved to calculate a set of best solutions for each subproblem. These sets of best

solutions are passed to the master problem which attempts to identify one solution from each

subproblem which, when combined, are both feasible and optimal to the original problem. If a

combination of solutions cannot be identified, additional solutions are generated from the

subproblems and fed to the master problem. This process continues iteratively until an optimal

solution is obtained.

Deckro et al. (1991) use the Sweeney-Murphy Decomposition approach to solve an instance of

the Resource-Constrained, Multi-Project Scheduling Problem (RCMPSP). In solving their

problem, Deckro et al. deal with resource constraints exclusively at the master level. The resulting

subproblems are simple resource-unconstrained, single-project scheduling problems (the optimal

solution can be found using the standard Critical Path Method). A modified zero-one

programming code was used to find the best solutions to the subproblems, as well as to solve the

master problem.

Van Hove (1998) uses Sweeney-Murphy Decomposition to solve the Generalized, Multi-

Modal, Resource-Constrained Multi-Project Scheduling Problem (GMRCMPSP). In his

formulation of the GMRCMPSP, subproblems (individual projects) contain generalized

precedences with minimal lags, renewable resources, and nonrenewable resources. The master, or

program-level, problem contains only nonrenewable resources. Consequently, the master problem

 6-4

consists of selecting one solution from each subproblem which is feasible to the program-level

nonrenewable resource constraints and that minimizes the program makespan. The decomposition

approach proved very successful to Van Hove’s problem, allowing solution of a problem with 8

subproblems, or projects, and a total of 116 activities.

Sweeney-Murphy Decomposition

Because of recent success using the Sweeney-Murphy Decomposition approach for solving the

RCMPSP and the GMRCMPSP, the approach provides a solid basis for solving the multi-project

MRCMPSP-GPR/EXP. This section presents the basic Sweeney-Murphy Decomposition

approach, discusses the choice of how many solutions to generate from each of the subproblems,

and develops alternative approaches for obtaining multipliers.

Problem Decomposition. Chapter III develops a complete zero-one formulation of the

MRCMPSP-GPR/EXP. The block-angular structure of the problem takes the form in Figure 6-1.

Note that constraints (3) consist of constraints which pertain to individual projects, while

constraints (2) are the coupling constraints which adjudicate the demands made on the program by

the projects. Using traditional Lagrangian relaxation methods (Geoffrion, 1974), the problem is

decomposed into P independent subproblems, ? ??pSP , shown in Figure 6-2.

The multipliers, ? , in ? ??pSP weight the objective functions of the subproblems in an attempt

to enforce the program-level constraints. In this way, the program influences the scheduling

decisions made at the project level. If the multipliers are zero, the projects are scheduled without

regard for program-level constraints.

 Once the subproblems have been solved to find the k-best solutions to each problem, the

solutions are passed up to the program level where they are evaluated in a search for a combination

which is feasible and optimal to the original problem. The master problem, (MP), takes the form

in Figure 6-3.

Note that for any given p and any given k, k
ppyA is a constant. (MP) is solved to find an

optimal solution vector, *? , which identifies the optimal combination of subproblem solutions. If

k is large enough so that all feasible solutions to each subproblem are included in problem (MP),

then (MP) is equivalent to the original problem, (P) (Sweeney and Murphy, 1979: 1130). Solving

(MP), then, provides an optimal solution to (P). If (MP) does not contain all subproblem solutions

 6-5

(the number of which could be intractable), then (MP) is a restriction of (P). Sweeney and Murphy

prove, however, that under certain conditions, an optimal solution to (MP) is optimal to (P)

(Sweeney and Murphy, 1979: 1131).

Original Problem

Problem (P): Minimize ?
?

?
?

1

1

P

p
ppz xc (1)

 Subject To

 11xA 22xA? ? ... PPxA? 11 ??? PP xA 0b? (2)

 11xB 1b? (3)

 22xB 2b?

 PPxB Pb?

 11 ?? PP xB 1?? Pb

??
?
?
?

??
?
?
?

?
p

pp

H

HN
p A0

AA
A ,

??
?
?
?

??
?
?
?

?
p

pp

H

HN
p B0

BB
B ,

??
?
?
?

??
?
?
?

?
p

p

H

N
p x

x
x , 11 ??? Pp

 ? ?1 0,?
pNx , 11 ??? Pp (4)

 integer 0,?
pHx , 11 ??? Pp (5)

 6-6

where

pNA represents the program-level precedence constraint coefficients,

pHA represents the program-level expediting resource coefficients,

pNB represents the project-level precedence constraint coefficients of project p,

pHB represents the project-level expediting resource coefficients of project p,

pNx represents the zero-one variables associated with the activities of project p,

pHx represents the integer variables associated with the expediting resources of project p,

p, Pp ??1 , are indices representing the P projects / subproblems, and

P + 1 is the index representing the program.

Figure 6-1. Block-Angular Structure

Subproblem for Project p

Problem ? ??pSP : Minimize ? ? ppp xµAc ? (5)

 Subject To ppxB pb? (3)

??
?
?
?

??
?
?
?

?
p

pp

H

HN
p A0

AA
A ,

??
?
?
?

??
?
?
?

?
p

pp

H

HN
p B0

BB
B ,

??
?
?
?

??
?
?
?

?
p

p

H

N
p x

x
x , 11 ??? Pp

 ? ?1 0,?
pNx , 11 ??? Pp (4)

 integer 0,?
pHx , 11 ??? Pp (5)

 6-7

where

µ are Lagrangian multipliers associated with the coupling constraints (2)

pNA represents the program-level precedence constraint coefficients,

pHA represents the program-level expediting resource coefficients,

pNB represents the project-level precedence constraint coefficients of project p,

pHB represents the project-level expediting resource coefficients of project p,

pNx represents the zero-one variables associated with the activities of project p,

pHx represents the integer variables associated with the expediting resources of project p,

p, Pp ??1 , are indices representing the P projects / subproblems, and

P + 1 is the index representing the program.

Figure 6-2. Sweeney-Murphy Subproblem

A lower bound, ? ?µLB , on the optimal solution to (P) can be obtained as the combination of

best solutions from each subproblem and is given by the following equation:

? ? ? ? ? ? ? ? ? ? 0
1

111
1

P
1
222

1
111 µbyµAcyµAcyµAcyµAcµ ?????????? ??? PPPPPLB (11)

Define ? ?*?y p to be the solution to subproblem p in the optimal solution to (MP). An upper

bound, UB, on the optimal solution to (P) can be obtained by solving (MP) and letting

 ? ??
?

?
?

1

1

P

p
ppUB *?yc (12)

where

 ? ? ? ? ? ? ? ?? ? 121
**** ,,,, ?y?y?y?y ?PP (13)

is the corresponding set of subproblem solutions.

 6-8

Master Problem

Problem (MP):

Minimize ???
?

k
K

k

k
1

1
11

1

)(yc ???
?

k
K

k

k
2

1
22

2

)(yc ...? ???
?

k
P

K

k

k
PP

P

1

)(yc k
P

K

k

k
PP

P

1
1

11

1

?
?

?? ??
?

)(yc (7)

Subject To

 ???
?

k
K

k

k
1

1
11

1

)(yA ???
?

k
K

k

k
2

1
22

2

)(yA ...? ???
?

k
P

K

k

k
PP

P

1

)(yA k
P

K

k

k
PP

P

1
1

11

1

?
?

?? ??
?

)(yA ?? b (8)

 ?
?
?

1

1
1

K

k

k ? ? (9)

 ?
?
?

2

1
2

K

k

k ? ?

?
?
?

P

1

K

k

k
P

 ? ?

 ?
?

?
??

1

1
1

PK

k

k
P ? ?

 ? ?1 0,?? k
p kp ,? (10)

where

?pK the number of feasible solutions of Subproblem p,

?k
py a rank-ordered feasible solution k of Subproblem p,

?? k
p 1 if solution k of Subproblem p is selected; 0, otherwise.

Figure 6-3. Sweeney-Murphy Master Problem

Now, define

 ? ?µLBUB ??? (14)

to be the difference between the upper bound and lower bound on the solution to (P), and define

 6-9

 ? ? ? ? 1
ppp

K
pppp

p yµAcyµAc ????? (15)

to be the difference between the worst solution to subproblem p and the best solution to

subproblem p. Optimality conditions are given in the Sweeney-Murphy Optimality Theorem,

provided as Theorem 6-1.

Theorem 6-1. Sweeney-Murphy Optimality Theorem (Sweeney and Murphy, 1979: 1131)

Theorem: If ??p? for 11 ??? Pp , then ? ? ? ? ? ? ? ?? ? 121
**** ,,,, ?y?y?y?y ?PP

is an optimal solution to (P).

Proof: The value of ? ? ? ? ? ? ? ?? ? 121
**** ,,,, ?y?y?y?y ?PP in Problem (P) is an

upper bound. That is, ? ??
?

?
?

1

1p

*
P

ppUB ?yc .

 Suppose ? a pkj ? for subproblem p such that j
py is part of a feasible

solution to (P) yielding a value UBz ? .

 Show that this supposition leads to a contradiction and, hence, no subproblem

solutions not already included in (MP) can be part of a better solution to (P).

 The minimum value of a Lagrangian relaxation of (P) with py held fixed at

j
py is given by ? ? ? ??

?

?
?

?????
1

1
0

1
P

pp
p

j
ppppppz µbyµAcyµAc . Therefore,

 6-10

? ? ? ?

? ? ? ? ? ?
? ? ? ? ? ?
? ?
? ? ? ?
? ?

UB
LB

LB

LB

LB

z

pp

p

ppp
j
ppp

P

p

j
ppppppppp

P

pp
p

j
pppppp

?
??

??
??

?????

???????

?????

?

?
?

?

?

?
?

?µ

µ

µ

yµAcyµAcµ

µbyµAcyµAcyµAc

µbyµAcyµAc

?
?
min

1

0

1

1

11

1

1
0

1

 This is a contradiction since it was assumed that UBz ? . Therefore,

? ? ? ? ? ? ? ?? ? 121
**** ,,,, ?y?y?y?y ?PP is an optimal solution to (P).

The Sweeney-Murphy Optimality Theorem hinges upon the identification of the k-best

solutions to each subproblem. The Scheduler presented in Chapter V is designed to find the k-best

solutions to the subproblems and is used for that purpose. One important consideration, though,

that is neither discussed by Sweeney and Murphy nor addressed yet in this discussion, is the

possibility of multiple solutions of equal value.

The Sweeney-Murphy Optimality Theorem shows that, under specific conditions, no solution

not already in the set of k-best solutions can contribute to a better solution to the original problem.

This can be true, though, only if the solutions already in the set of k-best are strictly better than the

solutions not in the set. If a solution not in the set has a value equal to that of the k-th best

solution, then the k-th best solution cannot be used in the calculation of p? which is used in the

optimality test. Suppose that a set of k-best solutions has been generated and that a solution exists

that is not in the set but which has a value equal to that of the k-th best solution. Since the set

contains only k solutions, it is rather arbitrary as to whether the k-th best solution currently in the

set or the alternate solution of equal value should be included in the set. It is entirely possible that

including the alternate solution in the set would lead to a better solution than that possible with the

current k-th best solution. Consequently, as subproblems are solved, if a solution of equal value to

the k-th best is dropped from the set, then p? is calculated using, not the value of the k-th best

 6-11

solution (i.e., the worst solution in the set), but the value of the next worst solution in the set.

Specifically, if Solutions k-1, k-2,… , k-n (n < k) all have the same objective function value as the

k-th best solution and if Solution k-n-1 has a better objective function value than the k-th best

solution, then the objective function of Solution k-n-1 is used to calculate p? . If all solutions of

equal value to the k-th best solution are in the set, then p? is calculated using the value of the k-th

best solution.

Solving the Subproblems. The first step in the Sweeney-Murphy Decomposition process is

solving the subproblems to find their respective k-best solutions. The decomposition of the multi-

project MRCMPSP-GRP/EXP leads to subproblems which are instances of the single-project

MRCPSP-GRP/EXP, which can be solved using the approach developed in Chapter V. This is

true with one exception: Subproblem P+1.

While Subproblems 1 through P are actual single projects, Subproblem P+1 is of an entirely

different nature. Subproblem P+1 consists of two types of variables: (1) the variable representing

the execution time of the program-level terminal activity and (2) the variables representing the

program-level expediting resources. These variables appear in the coupling constraints of both (P)

and (MP) to (1) tie the program completion time to the scheduled execution times of the other

activities and (2) determine the quantity of program-level expediting resources required to make a

combination of solutions from Subproblems 1 through P (the real project subproblems) resource

feasible.

Subproblem P+1 contributes to the program-level objective function by assessing a penalty

against the program based on the execution time of the program-level terminal activity (the

program completion time) and by charging the program for the program-level expediting resources

used by the projects.

When separated from the coupling constraints, though, the independent Subproblem P+1

becomes a rather trivial problem (see Chapter III for the zero-one formulation). Its constraints

consist exclusively of the upper bound, D (program horizon), on the program completion time and

the upper bounds on expediting resource use. Consequently, regardless of the penalty associated

with program completion, or the cost of expediting resources, or even the choice of µ , the optimal

solution to Subproblem P+1 will always be zero for all variables. Of course, this optimal is

infeasible to (MP), and thus (P), for any program with a non-zero duration (a basic assumption).

 6-12

Like the other subproblems, a set of k-best solutions could be generated for Subproblem P+1, but

this would undoubtedly require an extremely large k just to provide a solution that makes (MP)

feasible.

Another option for dealing with Subproblem P+1 is to generate its best solutions on the fly.

This approach is suggested by Sweeney and Murphy for subproblems that are rich in near-optimal

solutions (Sweeney and Murphy, 1979: 1134). Simply stated, rather than contributing a set of k-

best solutions from which the master problem can draw, the subproblem is incorporated directly

into a revised master problem, (MP2) (shown in Figure 6-4).

Solving the Master Problem. The Revised Master Problem (MP2) is solved using an implicit

enumeration algorithm. Implicit enumeration is used primarily for two reasons. First, the

procedure used to construct master problem solutions allows for quick and efficient fathoming of

large sets of infeasible or dominated subproblem solution combinations. Second, the algorithm

efficiently produces a set of k-best solutions to the master problem.

The algorithm attempts to build feasible master problem solutions by combining solutions from

the subproblems. Starting with the first solutions of each subproblem, the algorithm moves from

subproblem to subproblem, adding on a new subproblem solution until either (1) one solution from

each subproblem has been combined to form a complete, feasible solution to the master problem or

(2) at some point in the building process, the current partial solution is found to be infeasible or

dominated by the k-th best solution to the master. In either case, the algorithm backtracks, first to

untried solutions to the current subproblem, then to previous subproblems and their untried

solutions.

When a complete, feasible solution to the master problem is found, it is compared against the

current k-th best solution to the master. If the new solution is at least as good, it is added to the

solution array and the k-th best solution is removed. Complete solutions are stored in a k x (n +1)

x 2 array, where k is the number of best solutions desired and n is the number of activities in the

problem. For each activity, the solution array stores two values: (1) its execution mode and (2) its

start time. The objective function value is stored in Row 0 of the array. The solution array is

initialized with large values.

Note that while the above approach yields the k-best solutions to (MP), there is no guarantee

that these are the k-best solutions to (P). The Sweeney-Murphy Optimality Conditions guarantee

only that the best solution to (MP) is optimal to (P). The k-best solutions to (MP) provide k-good

 6-13

solutions to (P), but these are not the k-best solutions to (P) unless all feasible solutions to the

subproblems are included in (MP); in other words, if (MP) equals (P).

Revised Master Problem

Problem (MP2):

Minimize ???
?

k
K

k

k
1

1
11

1

)(yc ???
?

k
K

k

k
2

1
22

2

)(yc ...? ???
?

k
P

K

k

k
PP

P

1

)(yc 11 ?? PP xc (16)

Subject To

 ???
?

k
K

k

k
1

1
11

1

)(yA ???
?

k
K

k

k
2

1
22

2

)(yA ...? ???
?

k
P

K

k

k
PP

P

1

)(yA 11 ?? PP xA ?? b (17)

 ?
?
?

1

1
1

K

k

k ? ? (9)

?
?
?

2

1
2

K

k

k

 ? ?

?
?
?

PK

k

k
P

1 ? ?

 11 ?? PP xB 1?? Pb (3)

 ? ?1 0,?? k
p kp ,? (10)

where

?pK the number of feasible solutions of Subproblem p,

?k
py a rank-ordered feasible solution k of Subproblem p,

?? k
p 1 if solution k of Subproblem p is selected; 0, otherwise.

Figure 6-4. Revised Sweeney-Murphy Master Problem

As an example, consider the four-project problem described in Appendix F. This problem was

solved to find the 1000-best solutions using the Scheduler and then re-solved to find the 1000-best

solutions using the decomposition approach. In the case of the decomposition approach, each

subproblem provided (to the master) a set of their 1000-best solutions, leading to a master problem

 6-14

with a total of 10004 possible subproblem combinations. Both approaches found the same optimal

(a single optimal in this case) with an objective function value of 19,680. However, the 1000-th

best solution from the Scheduler had a value of 24,752 while the 1000-th best solution from the

decomposition approach had a value of 32,760. In fact, the set of 1000 solutions passed up from

each of the subproblems to the master problem did not contain a combination leading to a solution

of 24,752 (the 1000-th best Scheduler solution). The closest solutions found by the decomposition

approach were 24,704 (ranked 99) and 24,769 (ranked 100).

Consequently, there is a tradeoff between the time required to obtain a set of k solutions and

the quality of those solutions. If finding an optimal solution quickly is the primary goal, and

obtaining a set of good alternative solutions is only secondary, then the decomposition approach

should be used. If, however, a set of k-best solutions is required, then the Scheduler from Chapter

V is a more appropriate solution approach.

Assumptions. Before proceeding to the notation and description of the Decomposition

Algorithm, note the following assumptions.

1. Subproblems corresponding to the projects, Problems ? ??pSP , are solved in the order in

which they are numbered.

2. Subproblem solutions are rank ordered, 1?k being an optimal.

Notation. The following notation is used in the Decomposition Algorithm.

Problem Types:

 ? ??pSP = the subproblem corresponding to Project p

Indices:

 i = a project activity

 mi = the mode of activity i

 si = the scheduled start time of activity i

 pk = the counter indicating the current solution of Subproblem p

 6-15

Solution Parameters:

 P = the total number of subproblems

 pK = the number of best solutions from Subproblem p

 0K = the desired number of best solutions to the master problem

 pkz = the objective function value of the k-th solution to Subproblem p

 kZ = the objective function value of the k-th solution to the master problem (MP)

 p? = the difference between the worst and best solutions to Subproblem p

 µ = the Lagrangian multipliers associated with the coupling constraints

Activity Sets:

 Oi = the set of activities which precede activity i

 Ni = the set of activities which have a direct start-start lag relationship with activity i

pkM = the set of mode assignments associated with solution pk

pkS = the set of start time assignments associated with solution pk

Resource Sets:

 RQ = the set of program-level renewable resources

 NQ = the set of program-level nonrenewable resources

Time-Related Parameters:

iimd = the duration of activity i in mode m

 min
ij? = the minimal start-start lag time between activities i and j

 max
ij? = the maximal start-start lag time between activities i and j

Cost Parameters:

 N
k p

c = cost of nonrenewable expediting resources required by pk

 R
k p

c = cost of renewable expediting resources required by pk

 pC = the accumulated cost of the current solutions of Subproblems 1 through p

 6-16

Resource-Related Parameters:

 R
qimi

r = the units of renewable resource q required by activity i in mode mi

 R
pqtR = the units of renewable resource q remaining in time t after projects 1 through p have

been added to the program schedule

 R
pqtH = the units of expediting, renewable resource q remaining in time t after projects 1

through p have been added to the program schedule

 N
qimi

r = the units of nonrenewable resource q required by activity i in mode mi

 N
pqR = units of nonrenewable resource q remaining after projects 1 through p have been

added to the program schedule

 N
pqH = the units of expediting, nonrenewable resource q remaining after projects 1 through p

have been added to the program schedule

 N
qk p

r = the total demand by solution pk for nonrenewable resource q

 R
qtk p

r = the total demand by solution pk for renewable resource q at time t

Decomposition Algorithm. The Decomposition Algorithm is now outlined, followed by a

narrative description of the scheme.

Decomposition Algorithm

Step 0 Initialization.

 Obtain µ , an initial value of µ .

 Set ?kZ an arbitrarily large number (999999 in this study) for 01 Kk ?? .

 Set pK = the initial number of solutions to generate for Subproblems p, Pp ??1 .

 Set ?? an arbitrarily large number (e.g., 999999).

 6-17

 Set ?p? an arbitrarily small, non -negative number (e.g., 0) for Pp ??1 .

Step 1 For p such that ??p? , solve ? ?µpSP to obtain the pK -best solutions for

Subproblems p, Pp ??1 (the project-related subproblems). For each subproblem,

record if a solution equal to the k-th best is dropped from the set of k-best.

Step 2 If, for subproblem p (Pp ??1), a solution with value equal to that of solution pK is

dropped from the set of pK -best solutions, let ? ? 1max ppKpkpkkp zzzz
p
???? .

Otherwise, let 1ppKp zz
p
??? .

Step 3 Record ? ? ?
?

?
P

p
pzLB

1
1µ . Set p = 0 and 00 ?C .

Step 4 Let p = p + 1 and let 0?pk .

Step 5 Let 1?? pp kk . If pp Kk ? , go to Step 15.

Step 6 Test for Dominance. Test whether 1?pC plus the objective function value of

subproblem solution pk ,
pkz , is dominated by the value of the 0K -best master

problem solution,
0KZ . Thus, if

pkpK zCZ ?? ? 10
, subproblem solution pk cannot

lead to an improved master solution, so go to Step 5.

Step 7 Nonrenewable Resource Feasibility. Determine if pk is feasible to the nonrenewable

resource constraints (i.e., the sum of regular and expediting nonrenewable resources is

sufficient for the nonrenewable resource demand of solution pk). Let ?
?
?

?
p

pki

ip

J

Mm
i

N
qim

N
k rr

1

be the total demand by solution pk for nonrenewable resource q. If

NN
qp

N
qp

N
k QqHRr

p
???? ?? 11 ,,, , then pk is nonrenewable-resource feasible. If not

feasible, go to Step 5.

 6-18

Step 8 Test for Dominance. Test whether 1?pC plus the objective function value of

subproblem solution pk ,
pkz , plus the cost of nonrenewable expediting resources

required by pk , N
k p

c , is dominated by the value of the 0K -best master problem

solution,
0KZ . Thus, if N

kkpK pp
czCZ ??? ? 10

, subproblem solution pk cannot lead

to an improved master solution, so go to Step 5.

Step 9 Generalized Precedence Feasibility. Determine if subproblem solution pk is feasible

as to the program-level generalized precedences. For each activity i in p which has a

generalized precedence relationship with an activity j in any of projects 1 through p-1,

the following conditions must be true for feasibility. If not feasible, go to Step 5.

(Note: these are the same generalized precedence conditions used in the Scheduler and

discussed in Chapter V.)

 0?
iimd 0?

iimd

0?
jjmd

ijmji Ojdss
j

???? ,

ijiji Cjss ???? ,min?

ijiji Cjss ???? ,max?

ijmji Ojdss
j

????? ,1

ijiji Cjss ????? ,1min?

ijiji Cjss ????? ,1max?

0?
jjmd

iji Ojss ???? ,1

ijiji Cjss ????? ,1min?

ijiji Cjss ????? ,1max?

iji Ojss ??? ,

ijiji Cjss ???? ,min?

ijiji Cjss ???? ,max?

Step 10 Renewable Resource Feasibility. Determine if pk is feasible to the renewable resource

constraints (i.e., the sum of regular and expediting renewable resources in each period

 6-19

is sufficient for the renewable resource demand of solution pk). Let

? ?
?

?
?

???
?

?
p

pki

pki
iimii

ip

J

Ss
Mm
dsst

i

R
qim

R
qtk rr

1,
1

 be the total demand by solution pk for renewable resource q in time

period t. If ? ?
pppp kJJ

RR
qtp

R
qtp

R
qtk SssstsQqHRr ??????? ?? , , , , 11,1,1 , then pk is

renewable-resource feasible. If not feasible, go to Step 5.

Step 11 Adjust Resources and Costs. The new partial master solution schedule formed by

adding subproblem solution pk is feasible and may lead to an improved master

solution. Adjust program-level resource availabilities and the master schedule cost as

follows:

? ? N
N

qp
N

qk

N
qp

N
qk

N
qk

N
qpN

pq Qq
Rr
RrrR

R
p

pp ??
??
?
?
?

??
?
?
?

?
??

?
?

??
 if 0
 if

1

11 ,
,

,,

? ? N
N

qp
N

qk
N

qk
N

qp
N

qp

N
qp

N
qkN

pq Qq
RrrRH
Rr

H
pp

p ??
??
?
?
?

??
?
?
?

???
?

?
???

?
 if
 if 0

111

1 ,
,,,

,

? ? ? ?
ppp

p

pp

kJJ
R

R
qtp

R
qtk

R
qtp

R
qtk

R
qtk

R
qtpR

pqt SssstsQq
Rr
RrrR

R ?????
??
?
?
?

??
?
?
?

?
??

?
?

??
 if 0
 if

11
1

11 ,,,,
,

,,

? ? ? ?
ppp

pp

p

kJJ
N

R
qtp

R
qtk

R
qtk

R
qtp

R
qtp

R
qtp

R
qtkR

pqt SssstsQq
RrrRH
Rr

H ?????
??
?
?
?

??
?
?
?

???
?

?
???

?
 if
 if 0

11
111

1 ,,,,
,,,

,

? ? R
k

N
kpp pp

ccCC ??? ? 1

Step 12 Test for Dominance. Test whether pC is dominated by the value of the 0K -best

master problem solution,
0KZ . Thus, if pK CZ ?

0
, subproblem solution pk cannot

lead to an improved master solution, so remove subproblem solution pk from the

 6-20

current partial solution , adjust resource availabilities and the partial solution cost, and

go to Step 5.

Step 13 If subproblem p is NOT the last subproblem, Pp ? , go to Step 4. Otherwise, this

complete solution is as good as the current 0K -best solution, so add this solution to the

set of 0K -best and re-rank solutions.

Step 14 Adjust Resources and Costs. Remove subproblem solution pk from the current master

schedule. Adjust resource availabilities and the master schedule cost. Go to Step 5.

Step 15 Backtrack by Subproblem. Let 1?? pp . If 1?p , go to Step 5.

Step 16 Test for Optimality. (Note that p = 0.) Let 1ZUB ? . Calculate ? ?µLBUB ??? . If

??p? for Pp ??1 , then 1Z is optimal. Stop. Algorithm complete.

Step 17 1Z is NOT optimal. For p such that ??p? , increase pK , the number of solutions to

generate for Subproblem p. Go to Step 1.

Step 0 of the algorithm is an initialization step. In this step, an initial value of the Lagrangian

multipliers, µ , are obtained using one of the methods described later in this chapter. The method

used to obtain the multipliers may affect the performance of the algorithm but does not impact the

flow of the algorithm itself.

Step 0 is also used to set initial values for four sets of variables. The initial values for kZ ,

01 Kk ?? , are set to arbitrarily large numbers. These numbers are replaced by the objective

function values of feasible solutions to the master problem as these solutions are generated. The

initial values for pK , Pp ??1 , are set according to a scheme for choosing how many solutions

to generate for each subproblem, also discussed later in the chapter. Finally, a large value for ?

and small values for p? , Pp ??1 , are set. While these values are meaningless at this point in

 6-21

the algorithm, they are set necessarily but simply to satisfy the condition in Step 1 which invokes a

first-time solution of each subproblem to generate sets of k-best solutions.

Step 1 comprises solution of the subproblems to generate sets of k-best solutions. The first

pass through this step requires that all subproblems be solved (hence, the initial values for the

deltas set in Step 0), while subsequent passes through the step require the solution of only those

subproblems which fail the optimality test of Steps 15 and 16.

Step 2 calculates a (meaningful) p? for each subproblem based on the solution sets generated

in Step 1.

Step 3 records the lower bound on the optimal solution to (P) as the sum of the optimal

solutions to the subproblems. This step also sets p = 0 and 00 ?C .

Step 4 increments counter p by one so that in the first pass p = 1 and the algorithm begins

constructing a solution to (MP) by adding a candidate solution from Subproblem 1. (While this

step identifies which subproblem is the current subproblem, the next step identifies which candidate

solution from the current subproblem to add.) pk is also set to zero in this step.

Step 5 increments pk by one. In the first pass through this step, pk = 1 and the algorithm

begins constructing a solution to (MP) by adding Solution 1 to Subproblem 1.

As the algorithm builds a solution to (MP) by incrementally adding a solution from each

subproblem, Step 6 tests whether or not the cost of the previous partial solution plus the objective

function value of the candidate subproblem solution being added exceeds the objective function

value of the k-th best solution currently recorded for (MP). If so, the partial solution being

constructed cannot lead to an improved solution to (MP), and the candidate solution to the current

subproblem is fathomed by returning to Step 5 where the next candidate solution to the current

subproblem is nominated. Note that rejecting a candidate solution at this step requires no

accounting for resources or costs, since no resources or costs have been charged yet for adding this

solution. Consequently, this simple dominance test saves potentially considerable time otherwise

required for charging and subsequently refunding resources and costs for an unproductive

candidate solution.

If the test at Step 6 is passed, Step 7 determines if there are sufficient nonrenewable resources

(regular plus expediting) available to add the candidate solution. If not, the candidate solution is

rejected by returning to Step 5. Note that no resources or costs are charged at this step, either, in

 6-22

order to save the time otherwise required to account for resources and costs associated with a

solution which may be infeasible or unproductive.

Step 8 builds upon the feasibility test in Step 7. Step 7 determined that there are sufficient

regular plus expediting nonrenewable resources available to make the candidate solution feasible.

However, if expediting resources must be used, the cost of those resources may make the candidate

subproblem solution too costly. If so, the candidate solution is fathomed by returning to Step 5.

Steps 9 and 10 continue testing the candidate solution by checking for precedence and

renewable resource feasibility, respectively. If at either step the candidate is determined to be

infeasible, the solution is fathomed by returning to Step 5.

Once the algorithm has reached Step 11, it has determined that the candidate solution to the

current subproblem is feasible to the precedence constraints as well as to the renewable and

nonrenewable resource limitations. It has also determined that the cost of the previous partial

schedule plus the objective function value of the candidate solution plus the expediting

nonrenewable resource costs required to add the candidate solution do not exceed the currently

recorded k-th best solution to (MP). Therefore, Step 11 adds the candidate solution to the previous

partial schedule by charging its resource requirements against the available resources and by

adding its associated costs.

Up to this point, however, no dominance tests of the candidate solution included the cost of

expediting renewable resources. Step 12, therefore, performs one final dominance test on the new

partial solution which includes the cost of expediting renewable resources required by the candidate

solution. If the new partial solution cannot lead to an improved solution to (MP), the candidate

solution is removed from the partial solution, resources and costs are adjusted, and the algorithm

returns to Step 5 where the next candidate solution is considered.

If the new partial solution is feasible and is not dominated by the k-th best solution to (MP),

then Step 13 checks to see if a solution has been added by each subproblem. If not, the algorithm

returns to Step 4 where p is once again incremented by one and candidate solutions from the next

subproblem are considered. If a solution from each subproblem has been added, then the new

partial solution is, in fact, a complete solution to (MP). This solution is added to the set of

solutions to (MP) and the set of solutions is re-ranked from best to worst.

Once the complete solution has been recorded, the last subproblem solution to be added is

removed (in Step 14) by adjusting resources and costs and returning to Step 5.

 6-23

When returning to Step 5 from any other step, the next rank-ordered solution to the current

subproblem becomes the next candidate solution. If, however, all rank-ordered solutions to the

current Subproblem p* have been checked in context of partial solution p*-1, then the algorithm

proceeds to Step 15 where it backtracks by subproblem. In other words, Subproblem p*-1

becomes the current subproblem. If p*-1 is greater than or equal to one, the algorithm returns to

Step 5 where the next rank-ordered solution to Subproblem p*-1 becomes the new candidate

solution. In this way, the algorithm implicitly enumerates every possible combination of the

subproblem solutions.

If, at Step 15, p*-1 equals zero, then all combinations of subproblem solutions have been

implicitly enumerated. Therefore, an optimality test is performed to determine if an optimal

solution found for (MP) is optimal to (P). If so, the algorithm terminates successfully. If not, pK

for each subproblem p violating the optimality condition is increased (in Step 17), and the

algorithm returns to Step 1 where larger sets of best solutions are generated for each of the

violating subproblems. This marks the beginning of the next iteration and the algorithm proceeds

as before.

Note that if the optimal is not found on the first iteration, the array of master solutions is not

reinitialized to large numbers. The solutions with which it was previously filled during the first

iteration remain in the array. This provides a tighter upper bound and faster fathoming for future

iterations.

Correction to Sweeney-Murphy Approach. The solution approach proposed by Sweeney and

Murphy, and implemented in the Decomposition Algorithm above, hinges upon iteratively adding

subproblem solutions to the master problem until the optimality criterion (provided in the Sweeney-

Murphy Optimality Theorem) is met. The use of the Sweeney-Murphy Optimality Theorem as the

one and only stopping criterion suggests reliance on the theorem as a necessary condition for

optimality. Such use of the theorem, however, is inappropriate. While the theorem provides a

sufficient condition for optimality, it does not, in fact, provide a necessary condition (see counter

example below). In such cases, the algorithm may terminate without clearly indicating the

optimality of the solution. If a given problem meets the sufficient condition in Step 12 of the

Decomposition Algorithm, the algorithm stops with the result that the current optimal solution to

(MP) is optimal to (P). If, on the other hand, the given problem does not meet the sufficient

condition in Step 12, one cannot say if the current optimal solution to (MP) is optimal to (P) or not.

 6-24

One can continue with further iterations of the algorithm in hopes that the sufficient condition will

eventually be met, but one of three realities will certainly be faced:

1. The algorithm iterates to a point where the sufficient condition is met.

2. The algorithm terminates prematurely without the sufficient condition met and without

knowing if the current optimal to (MP) is optimal to (P). However, the current optimal to

(MP) is feasible to (P), since (MP) is a restriction of (P), so the optimal to (MP) may be

treated as a heuristic solution to (P).

3. The algorithm is allowed to iterate to a point at which all feasible solutions of all

subproblems have been generated, but the sufficient condition is still not met. In this case,

(MP) is equivalent to (P) and one can conclude that the optimal to (MP) must be optimal

to (P), but this determination is made without the Sweeney-Murphy Optimality Theorem

being met.

In the third case above, optimality of (P) can be established without the sufficient condition

being met, but the cost of generating all solutions to all subproblems may be high (perhaps higher

than solving the problem without decomposition). One would, therefore, like to find a tighter

necessary condition than the generation of all subproblem solutions. This is a subject for further

investigation.

Consider, now, the following example which counters the use of the Sweeney-Murphy

Optimality Theorem as a necessary condition for optimality. The example consists of a four-

project program (see Figure 6-5). Each project has a dummy start activity (AS, BS, CS, and DS,

respectively). The dummy start activities have no duration, no cost, and use no resources. Each

project also has two (numbered) activities with durations, costs, and resource use (project- and

program-level). Each project has a terminal activity (AT, BT, CT, and DT, respectively) which

has no duration and uses no resources, but each terminal activity has a cost which represents the

project completion cost. Finally, the projects are tied together by a dummy start activity (S) and a

terminal activity (T), neither of which has a duration or uses resources. However, terminal activity

(T) has a cost representing the program completion cost.

The data in Table 6-1 show that each numbered activity has a duration of one unit. Each

numbered activity also requires one unit of a renewable resource specific to their respective

projects. There is sufficient project-level resource availability that project-level resources do not

limit the scheduling process (any precedence feasible project schedule is also resource feasible).

 6-25

AS A1 A2 AT

BS B1 B2 BT

CS C1 C2 CT

DS D1 D2 DT

S T

Figure 6-5. Sweeney-Murphy Optimality Theorem Counterexample Diagram

Table 6-1. Sweeney-Murphy Optimality Theorem Counterexample Data

Project Activity Duration Early
Start (ES)

Base
Cost

@ ES

Per Period
Incremental

Cost

Project
Renew

Resource

Program
Renew

Resource

A A1 1 1 1 1 1 1
 A2 1 2 1 1 1 1
 AT 0 2 1 2 0 0
 Limit 2

B B1 1 1 1 1 1 1
 B2 1 2 1 1 1 1
 BT 0 2 1 2 0 0
 Limit 2

C C1 1 1 1 1 1 1
 C1 1 2 1 1 1 1
 CT 0 2 1 2 0 0
 Limit 2

D D1 1 1 1 1 1 1
 D2 1 2 1 1 1 2
 DT 0 2 1 1 0 0
 Limit 2

"T" T 0 2 1000 1000 0 0
 Limit 0
 Limit 4

 6-26

When the problem is decomposed, each project becomes a separate subproblem. The only

limiting constraints within each subproblem are the precedence constraints (e.g., A1 precedes A2,

A2 precedes AT). The cost of a subproblem schedule is the numbered activity costs (which depend

on when the activities are scheduled) and the project completion cost.

A fifth subproblem is composed of the program terminal activity. The only constraint within

this subproblem (when severed from the program-level constraints) is that activity T must occur no

earlier than its early start time (Time 2).

Figure 6-6 shows three alternative schedules for the program. Note that the representation of

the project and program terminal activities is a straight vertical line lying between two time

periods. The line actually falls at the back side of the time unit with which it is associated. For

example, if the program terminal activity T occurs at its early start time of 2, the line representing

the activity is on the border of time units 2 and 3. Note also that the program horizon is 8 (the sum

of all non-zero duration activities).

 6-27

Sch
Cost 1 2 3 4 5 6 7 8

Sch
Cost 1 2 3 4 5 6 7 8

Sch
Cost 1 2 3 4 5 6 7 8

1 1 7 1 d = 24 1 1
1 1 7 1 1 1
1 13 1

1 1 7 1 d = 24 1 1
1 1 7 1 1 1
1 13 1

1 1 7 1 d = 24 1 1
1 1 7 1 1 1
1 13 1

1 1 7 1 d = 18 1 1
1 2 7 2 2 2
1 7 2

1000 7000 d = 6000 2000

Res Demand 4 5 0 0 0 0 0 0 0 0 0 0 0 0 4 5 Res Demand 4 3 2 0 0 0 0 0
Res Avail 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Res Avail 4 4 4 4 4 4 4 4

 ^ Violation Violation ^
LB = 1012 UB = 2014

UB - LB = 2014 - 1012 = 1002 > d for Projects A through D

Time Period

Program Resource Limits
(Not Enforced) (Not Enforced)

Time Period

Program Resource Limits
(Enforced)

Time Period

Program Resource Limits

Optimal Program Schedule
("Dependent" Projects)

Optimal Project Schedules
("Independent" Projects)

Worst Project Schedules
("Independent" Projects)

Figure 6-6. Sweeney-Murphy Optimality Theorem Counterexample Chart

The first set of schedules in Figure 6-6 are the optimal subproblem solutions if the program-

level constraints are relaxed. Each activity starts at its early start time (including activity T). The

total cost of this set of solutions is 1012; this is the lower bound LB. The second set of schedules

is the worst subproblem solutions where every activity starts at its late start time. The importance

of this set of solutions is that it defines the maximum possible value for the ? of each subproblem

(the worst solution minus the best solution). These values are ? = 24, 24, 24, 18, and 6000,

respectively. Note that ? for Subproblem D is less than that of Subproblems A, B, and C, because

the cost for delaying project completion is only 1 per time unit rather than 2 per time unit.

When program-level constraints are now considered, the set of best solutions to the

subproblems do not form a feasible combination. Note that the demands for the program-level

resource are marked inside the gray boxes representing the activities. The problem is that the total

 6-28

demand for the program-level resource in Time 2 exceeds the availability of four. To resolve this

conflict, any of activities A2, B2, C2, or D2 could be shifted one unit to the right. The optimal

program schedule results from shifting Activity D2, because the cost of doing so is only two (one

for delaying D2 and one for delaying DT), while the cost of delaying any of the other activities is

three (only one for delaying the activity itself, but two for delaying completion of its corresponding

project).

Assuming all subproblem solutions are generated, the total cost of the optimal schedule to

(MP) and to (P) is 2014. This is UB. So LBUB ??? is 1002 which is larger than all

subproblem ? except for subproblem “T.” Hence, the condition of the Sweeney-Murphy

Optimality Theorem is not met, but an optimal solution has been found.

Choice of k. One choice that must be made to implement Sweeney-Murphy Decomposition is

the number of best solutions, k, to pass from each subproblem to the master problem. The smaller

k is, the less time spent generating the set of subproblem solutions. If k is small, the master

problem also takes less time to enumerate the combinations of subproblem solutions. Therefore, k

should ideally be as small as possible, while assuring optimality.

On the other hand, though k should ideally be chosen as small as possible, the lower k is, the

higher the possibility that the algorithm may not find an optimal to (P) in the first iteration. If the

algorithm has to conduct subsequent iterations, overall solution time could increase significantly.

The only leveraging provided by the previous iteration is that the previous subproblem solutions

can be used to partially initialize the arrays of subproblem solutions. If 1k subproblem solutions

were generated in the first iteration and 12 kk ? subproblem solutions are to be generated in the

second iteration, then the first 1k rank-ordered positions in the solution array are filled with the

previous set of best solutions and the remaining 12 kk ? positions are filled with an appropriately

large value (e.g., 999999). Since fathoming of branches in the subproblem solver is based on the

value of the k-th best solution (an arbitrarily large value), even the leveraging from the previous

solutions is likely to be minimal. Consequently, the time required to solve the subproblem in

subsequent iterations is most likely at least as long as the time to solve the subproblem in the first

iteration.

Another compounding factor is the possibility that only a subset of subproblems may need to

be resolved at a subsequent iteration, if any. As a result, an a priori attempt to find just the right

 6-29

value of k is a difficult task at best. The right choice is a function of the time required to solve the

subproblems for a smaller set of solutions versus a larger set, the probability that a subproblem

will need to be resolved in a subsequent iteration (which also depends on the size of the set in the

previous iteration), and the amount of duplicative effort to solve a subproblem again for a larger

value of k. Of course, all of these values (the time to solve the subproblems for varying sizes of k

and the probability that the sets of subproblem solutions of some given size will provide an optimal

combination) are dependent on the characteristics (network complexity, resource strength, etc.) of

each subproblem and of the master problem. The implementer of Sweeney-Murphy

Decomposition, then, must choose the initial value of k based on experience, intuition, or empirical

analysis if time allows. An empirical analysis is provided in this study.

Figures 6-7 and 6-8 (repeated from Chapter V) provide some insight into the time required to

solve the subproblems for varying values of k. Based on values of k of 1, 10, 100, and 1000, these

figures show, respectively, the average time required per solution and the overall solution time for

each k. The marginal amount of time required to find one additional solution decreases

significantly as k increases. The resultant growth in overall solution time also flattens out. If one

is risk averse, preferring to solve each subproblem for a large enough k so that iteration is not

necessary, then these results provide some assurance that if k is larger than minimally necessary,

overall solution time does not suffer significantly.

 6-30

Average Time Per Solution

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 10 100 1000

Best Solutions (k)

A
ve

ra
ge

 T
im

e
P

er
 S

ol
ut

io
n

(s
ec

on
ds

)
Jobs = 10

Jobs = 20

Jobs = 30

Jobs = 50

Figure 6-7. Average Time Per Solution

Overall Average Solution Times vs. k

0

1

2

3

4

5

6

0 200 400 600 800 1000

Best Solutions (k)

A
ve

ra
ge

 T
im

e
(s

ec
on

ds
)

Ave to Completion Ave to Optimal

Figure 6-8. Overall Average Solution Times Versus k

For the risk prone who is willing to gamble multiple iterations to reduce initial subproblem

solution time, their payoff depends on the structure of the master problem. If the master problem

contains no program-level constraints, then the optimal subproblem solutions form an optimal

 6-31

solution to (P). In this case, solving the subproblems for a very small k would be preferable. If,

however, the master problem is highly constrained, then a large number of solutions from each

subproblem may be required even to find a feasible combination, not to mention an optimal one.

The section on testing, below, tests various schemes for choosing k based on the respective

difficulty of subproblems and the master problem.

Choice of Multipliers. A second choice required for implementation of Sweeney-Murphy

Decomposition is initial values for the Lagrangian multipliers. Multipliers in the subproblems are

a counterbalance to k. The better the multipliers, the fewer the subproblem solutions required to

find an optimal solution to (P). The easier it is to generate the k solutions, the less important it is

to find the optimal multipliers (Sweeney and Murphy, 1979: 1133).

In the context of Lagrangian Relaxation, multipliers are used in the subproblem objective

functions to weight the importance of the coupling constraints and the scarcity of resources. If the

multipliers are zero, then the coupling constraints are ignored when solving the subproblems. If the

multipliers are arbitrarily large, then the subproblems over-emphasize the coupling constraints,

leading to a solution which may be harmful to the possibly competing interests of the subproblem.

Good multipliers, by contrast, are most likely somewhere between zero and an arbitrarily large

number. Good multipliers influence the subproblems to provide solutions to the master problem

which lead to tight bounds on the optimal solution to (P). That is, ? ?µLBUB ??? is minimized.

The value of µ which maximizes ? ?µLB and which, therefore, provides the best choice of µ

is the solution to problem (D), the Lagrangian dual of (P) (shown in Figure 6-9).

Lagrangian Dual of (P)

Problem (D):

? ? ? ?
?
?
?

?
?
?

?????? ?
????

pLB pppp

P

p
ppp integer and 0 min max max 0

1000
xbxBµbxµAcµ

µµµ
, (18)

Figure 6-9. Lagrangian Dual of Original Problem (P)

Sweeney and Murphy (1979: 1132) discuss the difficulty of solving (D) and suggest two

alternative approaches for choosing multipliers. Both are LP-based methods, using Lagrangian

 6-32

duality theory common in the literature (e.g., Geoffrion, 1974; Fisher, 1981). One approach for

choosing µ is to solve the LP relaxation of (P) and use the dual variables associated with the

coupling constraints. If it is inconvenient to solve the LP relaxation of (P), Sweeney and Murphy

suggest initially setting 0µ ? , and then, after solving (MP) the first time, set µ to the dual

variables associated with coupling constraints in the LP relaxation of (MP). This second method is

used by Sweeney and Murphy in a sample problem, as well as by Deckro et al. (1991).

Unfortunately, neither approach can be used for the MRCMPSP-GPR/EXP.

As previously mentioned, both approaches proposed by Sweeney and Murphy are LP-based.

Neither the subproblems nor the master problem of the MRCMPSP-GPR/EXP are solved with LP-

based methods, so multipliers based on these approaches are not readily available. Still, it is

important to identify a means by which the master problem can influence the solutions provided by

the subproblems. For this, a more economic interpretation of the multipliers is in order.

Lagrangian multipliers are the dual variables associated with the constraints of an LP. When

an LP is solved to optimality, the dual variables, also known as shadow prices, reflect the increase

in the objective function value possible if the right-hand side of the associated constraint is raised

by one unit. That is, a shadow price is the marginal value of one additional unit of resource given

the current optimal solution. Hence, for binding constraints, shadow prices may be positive,

reflecting the maximum amount the decision-maker should be willing to pay for an additional unit

of resource. For non-binding constraints, shadow prices are zero, because there is no value in

purchasing more units of a resource which is already in excess. The challenge in this study is to

estimate shadow prices without solving an LP.

Adding to the challenge of estimating shadow prices is the reality that the shadow prices must

be estimated before the problem is initially solved. In fact, the shadow prices need to be estimated

in order to solve the problem. This leads to the concept of provisional dual prices, proposed by

Baumol and Fabian (1964). Provisional dual prices reflect the marginal profitability of a resource

when used as prescribed in the current solution, not necessarily the optimal solution. The primary

difference between these and regular duals is that these prices may be negative (Baumol and

Fabian, 1964: 7).

If the Dantzig-Wolfe Decomposition approach could be used for solving the MRCMPSP-

GPR/EXP, there would be an iterative process where the program sets initial prices that it charges

the projects for program-level resources. These prices are recalculated each time the master

 6-33

problem is solved and these new prices are passed to the projects. With Sweeney-Murphy

Decomposition, good prices need to be initially estimated, especially since a single iteration would

be ideal. In this situation, the provisional dual prices are, in essence, a forecast of the value of

resources, since they must be estimated even before an initial allocation is made.

Since the goal of multipliers is to enable the program to impact the decisions made by the

projects, Baumol and Fabian suggest that:

The means to induce subdivisions to increase activities which produce external economies and
to reduce activities which produce external diseconomies is accomplished by the addition to
divisional earnings of a per unit subsidy or bonus of appropriate magnitude for every external
economy yielding output, and a per unit penalty on those products which involve diseconomies.
Baumol and Fabian (1964: 4)

Substituting project for subdivision, projects should be rewarded for using resources available

in excess and should be charged for using resources that are in high demand by other projects.

Since project activities have multiple modes of execution, it is difficult to know a priori exactly

how much of any given resource a project will demand. Activities can also be scheduled in

multiple time periods, so it is difficult to know when the resources will be demanded. The

remainder of this subsection is devoted to the proposition of four potential approaches for choosing

multipliers, or provisional dual prices. Each approach is tested in the next section.

The first two approaches for choosing multipliers are not elegant, but they are valid

approaches. The first approach is to choose zero for all multipliers and the second approach is to

choose an arbitrarily large value for the multipliers. As previously discussed, neither of these

approaches would be expected to perform well, but they do, in some sense, provide bounds by

which other approaches can be evaluated.

The third approach for choosing multipliers is based on the work of Nauss (1979). To

estimate the marginal benefit of resources in an IP, Nauss solves the IP to optimality and, then in

turn, varies the right-hand side of each resource constraint by one unit and re-solves the problem.

The estimated marginal benefit of a resource is then the difference between the optimal objective

function value of the original problem and the optimal objective function value of the problem with

the respective resource constraint varied. Obviously, if the MRCMPSP-GPR/EXP could be solved

to optimality easily enough to uses Nauss’ method directly, the whole purpose behind finding the

multipliers in the first place would be moot. Nauss’ concept, though, can be used.

In what this work refers to as a Modified Nauss Approach (MNA), the original problem (P) is

solved to find a feasible solution. The Scheduler developed in Chapter V is applied to (P), but is

 6-34

stopped before completion. Termination of the Scheduler is triggered only after it finds at least one

solution and has run for some user-defined length of time. Use of the Scheduler as a heuristic for

these purposes is not only convenient, but is guaranteed to find a feasible solution, if one exists.

Drexl and Grunewald (1993) point out that, in general, heuristics may, especially in the presence of

scarce resources, not even be able to find a feasible schedule. The Scheduler is designed

specifically for this problem type and its use assures that a feasible solutions is found and that

multipliers can be calculated. The analysis in Chapter V also showed that the optimal solution to a

problem is generally found relatively quickly using the Scheduler (most of the computing time is

used to verify the solution), so a relatively good heuristic solution should be found.

To estimate the marginal benefit of nonrenewable resources, the regular availability of each

nonrenewable resource is varied, in turn, by one unit and (P) is re-solved until the Scheduler

terminates according to the criteria previously selected. The difference in solutions represents the

marginal benefit of an additional unit of nonrenewable resource. (A similar approach was used by

Van Hove, 1998).

Renewable resources are more difficult because there is not a single availability for each

resource. In fact, each resource has a separate availability for each time period. Therefore, to

estimate the marginal benefit of a renewable resource, the regular availability of the resource in

each period is concurrently varied by one unit and (P) resolved until the Scheduler terminates

according to the criteria previously selected. The difference in solutions represents the total benefit

of an additional unit of nonrenewable resource in each time period. To avoid over-estimating the

value of the resource per period, the total benefit is divided by the program duration in the heuristic

solution.

The fourth approach for choosing multipliers is based on the concept of Average Utilization

Factor (AUF) described by Kurtulus and Davis (1982) and Kurtulus and Narula (1985). As

defined by Kurtulus and Davis, the AUF is calculated for each time period and is the ratio of the

total amount of resource required to the amount available, based on a time only analysis of the

program. The value of this measure is, in principle, equivalent to the Resource Strength (RS) used

in previous chapters. However, RS is not generally known, so AUF must be calculated. RS was

used in the generation of problems, is a factor known outside the problem, and is the same for each

time period, by construction. AUF, by contrast, is used within the problem where the value is not

known a priori, but must be calculated. AUF may also vary between time periods.

 6-35

The AUF Approach, then, consists of applying the Generalized Critical Path Method (GCPM),

developed in Chapter IV, to the problem. This provides the time only schedule of the program.

The next step is to calculate the total demand for each resource in each time period. Recall that the

GCPM uses the activity execution modes of least duration. These shortest-duration modes,

however, are not necessarily the mode choices the projects would make from a resource

perspective. To assure that the AUF accounts for the possibly higher resource demands of

alternative modes, an activity’s demand for a resource is based on the highest possible demand

from among the activity’s modes. The AUFs for renewable and nonrenewable resources are, then,

calculated using the following equations:

? ?
? ? tq

R

r

AUF R
qt

P

p

J

dsst
i

R
imqtMm

R
qt

p

iii

i

max
1

1
1 1

1 ,,, ??

? ?
?

???
? ??

 (19)

? ?
q

R

r
AUF N

q

P

p

J

i

N
imqMm

N
q

p

i ??
? ?

? ? ??

max
1 1 1

, (20)

where
R

qtAUF = AUF for renewable resource q at time t

N
qAUF = AUF for nonrenewable resource q

R
imqtr = requirement for renewable resource q at time t by activity i in mode m

N
imqr = requirement for nonrenewable resource q by activity i in mode m

R
qtR = availability of renewable resource q at time t

N
qR = availability of nonrenewable resource q

is = start time of activity i

1id = duration of activity i in mode 1

 6-36

If 1?AUF for some resource in some time period, the demand for the resource is no more

than its availability. The price charged by the program for this resource in this time period should

be zero.

If 1?AUF for some resource in some time period, the demand for the resource exceeds its

regular availability and projects should pay a premium for using this resource. The price depends

on the degree to which AUF exceeds one. If the total demand for the resource is less than its

regular plus expediting availability in the stated time period, the demand for the resource may be

met using expediting resources. In this case, the price charged by the program for a unit of this

resource is the cost of a unit of expediting resource (a value which is given in the problem

statement). If the total demand for the resource is greater than its regular plus expediting

availability, then resource feasibility is only achievable through some combination of activity mode

changes and / or activity delays (in the case of nonrenewable resources, only mode changes).

The minimal cost combination of mode changes and activity delays could be calculated to

provide the estimated cost of resource feasibility in the given time period. Such a calculation

would have to account for the ripple effect that the changes would have on subsequent activities

and time periods. If an activity is delayed, other activities may also need to be delayed, adding to

the cost of the initial delay and possibly creating resource infeasibilities in future time periods.

Even if a simple mode change is made, the duration of the changed activity may increase, causing

the same effects on future activities and time periods caused by an activity delay.

Given the reality that the resource demands (upon which the resource infeasible condition

results) is only a rough estimate, the computational cost of calculating the minimal cost

combination of mode changes and activity delays would not likely prove worthwhile. Instead, the

cost of the time-only schedule is calculated. The cost of modes and of expediting resource usage is

included in the time-only cost, but resource infeasibilities are temporarily ignored. In essence, it is

the resource infeasibilities in the time only schedule that force an alternate solution.

The original problem is, then, solved heuristically as in the Modified Nauss Approach, yielding

a resource feasible solution. The difference in the costs of the time-only schedule and the resource-

feasible schedule is calculated. This difference is the consequence of the resource infeasibilities in

the time-only schedule. Finally, the cost difference is partitioned among the resources whose

1?AUF and whose demand could not be met with expediting resources. The partitioning is based

on the relative contribution to resource infeasibility of the violating resources as follows:

 6-37

 tq
AUFAUF

AUF

t q q

N
q

R
qt

R
qtR

qt , ,p ?
??
?
?

?

?

??
?
?

?

?

?
?? ? ? ?? (21)

 q
AUFAUF

AUF

t q q

N
q

R
qt

N
qN

q ?
??
?
?

?

?

??
?
?

?

?

?
?? ? ? ? ,p ? (22)

where

? is the total cost difference between the time only and resource feasible schedules
R
qtp is the price charged for renewable resource q in time period t

N
qp is the price charged for nonrenewable resource q

In this way, the program shares the cost of a resource feasible schedule by charging the

projects for using resources in time periods that cause resource conflicts in the time only schedule.

All of the proposed methods for choosing multipliers are, to this point, theoretically based. It

remains to be seen under what conditions each method performs well. Testing of the approaches is

presented in a subsequent section.

Acceleration Schemes

A number of optional schemes may be used to increase the speed of the decomposition

approach. The acceleration schemes presented here can be used together with the multipliers, but

the schemes are more direct approaches for bounding and constraining the subproblem solutions.

The Incremental Enumeration scheme also provides quicker solution of the master problem.

When Sweeney and Murphy presented their decomposition approach, they solved the master

problem to completion without testing solutions for optimality until the end. In fact, an optimal

solution may be found and proven to be optimal early in the enumeration. The Incremental

Enumeration scheme makes a more proactive use of the optimality conditions to find and confirm

an optimal solution before completely enumerating the master problem.

 6-38

Subproblem Solution Bounding. This scheme is based on finding a good solution to the

original problem (P) before the subproblems are solved. With a good solution to (P), upper bounds

on the subproblem solution values can be determined and used to initialize the subproblem solution

arrays. The upper bounds permit faster fathoming of unproductive subproblem solutions than the

arbitrarily large values with which the solution arrays would otherwise be initialized.

This option is executed by first finding a heuristic solution (HS) to (P). The Scheduler is used

for this purpose as was previously done for finding Lagrangian multipliers. A minimal cost for

each subproblem is then calculated. A minimal cost is easily obtained by using the early start

times (based on the GCPM) of each activity in the subproblem. Using the minimum base and

incremental mode costs possible for each activity (i.e., the minimum from among the modes of the

activity), the mode costs for all activities, starting at their early start times, are added. This early-

start-time (EST) schedule may not be resource feasible, but it does provide a minimal cost, EST
pz ,

for Subproblems p, Pp ??1 .

Finally, an upper bound, *pUB , on the objective function value for subproblem p* is obtained

by subtracting the sum of the early-start-time schedule costs, EST
pz , for the other subproblems,

*pp ? , from the heuristic solution, HS, to (P). That is,

?
?

??
*

EST
*

pp
pp zHSUB .

As solutions are generated for Subproblem p*, any solution greater than *pUB is fathomed since

such a solution would yield a program cost greater than the heuristic solution to (P) previously

found.

Series Approach. Since subproblems are solved in series (vice in parallel), information

obtained from the k-best solutions to Subproblems 1 through p-1 can be used when solving

Subproblem p. The goal is to eliminate from the set of k-best solutions to Subproblem p as many

solutions which would not be feasible to (P) when used in concert with any of the solutions to

Subproblems 1 through p-1.

Three types of information obtained from Subproblems 1 through p-1 can be used when

solving Subproblem p: an upper bound on the objective function value, reduced activity start time

windows, and constraints on resource use. This information is obtained and used as follows:

 6-39

? ? Upper Bound on Objective Function Value. As with the Subproblem Solution Bounding

scheme above, an initial heuristic solution to (P) can be obtained. Once Subproblems 1

through p-1 have been solved, the best solution values to Subproblems 1 through p-1 can

be added to the value of the early-start-time schedules of Subproblems p+1 through P.

This sum can be subtracted from the heuristic solution value, HS, to obtain a new upper

bound on the solution to p. When solving Subproblem p*, the upper bound on the

objective function value is given by

??
??

???
*

EST

*
1*

pp
p

pp
pp zzHSUB .

? ? Reduced Activity Start Time Windows. The k-best solutions to each of Subproblems 1

through p-1 can be compared to find the earliest time (within the set of k-best solutions)

that each activity in the subproblem starts. The latest start time of each activity can be

found in like manner. Before solving Subproblem p, the early and late start times for

activities in previously solved projects are fixed and the GCPM used to calculate new early

and late start times for Subproblem p. Doing so reduces the number of solutions in the set

of k-best solutions to Subproblem p which are precedence infeasible when used in

combination with the solutions to Subproblems 1 through p-1.

? ? Constraints on Resource Use. The limitations on program-level resources can be directly

considered when solving each of the subproblems to reduce the number of subproblem

solutions which are resource infeasible at the program-level. To do so, the set of program-

level resources can be added to the set of project-level resources in each subproblem. The

full complement of regular and expediting resources is initially made available to each

subproblem, and there is no charge to the subproblem for using expediting resources.

Program-level resources, therefore, do not impact the cost of a subproblem solution, but

serve only to eliminate subproblem solutions which cannot possibly lead to feasible

solutions to (P). Once Subproblems 1 through p-1 have been solved, the minimal usage of

program-level resources from among the k-best solutions to each subproblem is used to

decrement the availability of these resources to Subproblem p. As a result, each

subproblem is increasingly more constrained by the program-level resources and its set of

 6-40

k-best solutions provides a higher percentage of solutions which are resource feasible when

used in combination with the solutions to the previous subproblems.

Incremental Enumeration. Each time a feasible master problem solution is found, recalculate

? and the subproblem deltas, p? , and test for optimality. In this case, however, the p? for each

subproblem is calculated using the current subproblem solution rather than the k-th best solution to

that subproblem. The advantage of this approach is that if the feasible master problem solution is

an optimal solution to (P), this test might prove the solution to be optimal without having to

implicitly enumerate all Pkkkk ???? 321 possible subproblem solution combinations. Note

that failing the optimality test at this point does not imply that the current feasible solution is not

optimal, only that enumeration of solution combinations must continue until optimality can be

established. Note, too, that this option is useful only if the primary consideration is to find an

optimal solution rather than finding the k-best solutions to (MP). While this option leads to an

optimal, it may terminate before the k-best solutions to (MP) have been found.

Test Problem Design

The experimental design for testing the approaches presented in this chapter can be divided

into two parts: the problem design and the solution design. The solution design, or the manner in

which solution approaches are applied to the problems, is discussed in subsequent sections in

conjunction with the results of those approaches. This section discusses the problems generated to

test the solution approaches.

Each problem used for testing can be defined in terms of its program structure, the difficulty of

its component projects, and the difficulty imposed by the program-level constraints. These

problem characteristics are described below, followed by a discussion of how the characteristics

are combined to form a set of 54 test problems used throughout the remainder of the chapter.

Program Designs. Five basic program structures are used for testing. These program

structures differ in the way projects relate to each other temporally and in the presence or absence

of program-level renewable and nonrenewable resources. The five program structures are depicted

in Figure 6-10 as Program A through Program E. In each depiction, temporal relationships are

represented by the network structure presented, where the blocks represent distinct projects and the

circles represent dummy start and terminal activities. Lines between projects (as in Program D)

 6-41

represent generalized precedence between activities in one project and activities in another project.

The vertical bar labeled NR denotes the presence of program-level nonrenewable resources while

the horizontal bar labeled RR denotes the presence of program-level renewable resources.

Program A consists of a set of nearly independent projects. There are no program-level

resources and the projects are tied together merely by a dummy start activity and an end activity.

The projects, however, cannot be solved in isolation because the end activity represents the

completion of the program, which is dependent on the completion times of the projects. Decisions

made at the project level, consequently, impact the completion cost (and overall cost) incurred by

the program.

Program B consists of a set of projects which are related only by their requirements for

common, program-level, nonrenewable resources. In the absence of (1) expediting resources at the

project and program levels and (2) maximum time lags between activities, this program becomes

the multi-project GMRCMPSP addressed by Van Hove (1998).

Program C builds upon Program B with the addition of program-level renewable resources.

Program D is an extension of Program C, where generalized precedences between activities in

different projects are added.

Finally, Program E is, in some sense, a special case of Program D. Program E has generalized

precedences between activities in different projects, but the precedences exist only between the

terminal activity of one project and the start activity of the next. Consequently, projects follow one

from another. Program E may also contain renewable resources controlled by the program, but

since projects do not overlap in time, these program-level resources can be treated as though

passed down to the projects. The same cannot be said of program-level nonrenewable resources

where their allocation to projects constrains the execution options of the projects’ activities.

 6-42

Nonrenew Res
Renew Res
Gen PrecedenceX

X

A

X

N
R

Nonrenew Res
Renew Res
Gen PrecedenceX

X

B

RR

N
R

Nonrenew Res
Renew Res
Gen PrecedenceX

C

RR

N
R

Nonrenew Res
Renew Res
Gen Precedence

D

N
R

Nonrenew Res
Renew Res
Gen Precedence

X

E

Figure 6-10. Program Designs

Project Level Difficulty. The projects which comprise each program differ in their degree of

difficulty to schedule. Based on the results of Chapter V, six problem parameters were identified

 6-43

as being significant factors in problem solvability. With the exception of number of activities, two

levels of each factor were chosen and partitioned to form an Easy set of parameters and a Hard set

of parameters. (Number of activities is dealt with separately and discussed later.) Table 6-2

outlines the significant factors and the levels chosen to form the Easy and Hard sets of parameters.

Note that fewer activity execution modes and fewer resources make easier projects, while higher

network restrictiveness and higher regular resource strength contribute to easier projects. The

parameters held constant for problem generation are outlined in Table 6-3.

Table 6-2. Project-Level Generation Parameters Which Vary

PARAMETER
Designator "Easy" "Hard"
Number of Modes Per Activity 1 3
Project Network Restrictiveness 0.75 0.25
Number of Renewable/Nonrenewable Resources 1 3
Regular Renewable/Nonrenewable Resource Strength 1.00 0.50
Total Renewable/Nonrenewable Resource Strength 0.00 0.50

LEVELS

Table 6-3. Project Level Generation Parameters Held Constant

PARAMETER Min Max
Job Duration, Maximum 10 10
Lag Fraction 0.20 0.20
Minimal Lag -2 2
Maximal Lag 4 8
Renewable/Nonrenewable Resource Factor 1.00 1.00
Resource Demand 1 10
Base Project Penalty 500 750
Project Penalty Increment 400 500
Base Mode Cost 50 100
Mode Cost Increment 50 100
Expediting Resource Cost 0 50

Program Level Difficulty. Programs also differ in the difficulty of the program-level

constraints. Depending on the program structure being addressed and its corresponding features,

program-level generalized precedences and resources are generated to be either Easy or Hard.

Table 6-4 shows the program-level parameters which vary and the values which define the Easy

and Hard sets. Note that the factor levels used to form the Easy and Hard sets were chosen based

on results of Chapter V. While fewer resources and higher regular resource strength should clearly

make for easier program-level constraints, it is unclear in advance of testing whether higher

 6-44

program network restrictiveness really makes the problem easier or if it makes the problem harder.

If the problem were solved as a single super-project, higher network restrictiveness would certainly

make the problem easier. On the other hand, the higher restrictiveness may make it more difficult

in the decomposition approach to find feasible sets of subproblem solutions. Since the exact

impact of program restrictiveness is not known a priori, the values have been chosen consistent

with the results of Chapter V.

Table 6-4. Program-Level Generation Parameters Which Vary

PARAMETER
Designator "Easy" "Hard"
Program Network Restrictiveness 0.75 0.25
Number of Renewable/Nonrenewable Resources 1 3
Regular Renewable/Nonrenewable Resource Strength 1.00 0.50
Total Renewable/Nonrenewable Resource Strength 0.00 0.50

LEVELS

Table 6-5. Problem Design

Program
Structure

Projects Jobs Per
Project

Total Jobs Project / Program
Difficulty

Total
Problems

A

4

4
8
12

18
34
50

Easy / NA
Hard / NA

6

B

4

4
8
12

18
34
50

Easy / Easy
Easy / Hard
Hard / Easy
Hard / Hard

12

C

4

4
8
12

18
34
50

Easy / Easy
Easy / Hard
Hard / Easy
Hard / Hard

12

D

4

4
8
12

18
34
50

Easy / Easy
Easy / Hard
Hard / Easy
Hard / Hard

12

E

4

4
8
12

18
34
50

Easy / Easy
Easy / Hard
Hard / Easy
Hard / Hard

12

Total 54

 6-45

Problem Generation. With program structures designed and the characteristics of Easy and

Hard projects and programs defined, a total of 54 programs were generated using PAGER

(described in Chapter IV). Each program consists of four projects, all projects being either Easy

or Hard. Table 6-5 shows the design applied to problem generation.

Testing Results

Testing was conducted to:

1. Evaluate the alternate methods of determining multipliers

2. Assess the performance of the acceleration schemes

3. Evaluate alternate choices of k

4. Compare the decomposition approach to the single-project Scheduler from Chapter V.

All test problems were generated using the Program Attributes Generator with Expediting

Resources (PAGER) presented in Chapter IV and solved using a 750 MHz, Pentium III processor

with 256 MB of Random Access Memory (RAM).

Methods of Determining Multipliers. The 54 test problems outlined in the previous section

were solved using each of the methods for determining multipliers. Each problem was solved to

find a single optimal solution. At each iteration of the decomposition algorithm, 100 solutions

from each subproblem were generated. The problems were also solved using the single-project

Scheduler to find a single optimal solution. A solution time limit of 20 minutes per problem was

imposed to control the total time to solve all test problems.

Figure 6-11 shows the percentage of problems which were solved to optimality within the time

limit and the percentage which exceeded the time limit. The AUF method of determining

multipliers was most successful at solving the set of problems within the time limit, followed by

using no multiplier at all, then the MNA method, and the single-project Scheduler. Using an

arbitrarily large number for the multipliers was least productive.

For the problems which solved to optimality within the imposed time limit, solutions times are

reported in Table 6-6. Problem decomposition led to more problems solved and generally faster

solution times than the single-project Scheduler, except when arbitrarily large multipliers were

used. When comparing just the multiplier methods, though, the results in Table 6-6 are mixed,

with no method clearly dominating the others. Using no multipliers at all had the best average

solution time, but it found fewer solutions (the number reported in the Count column of Table 6-6)

 6-46

than the AUF method. The MNA method appears to be dominated by the AUF method and by

using no mulitpliers, but further investigation is merited to determine if problem characteristics

effect the performance of each method.

Solution Results vs. Multiplier Type / Scheduler

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Optimal Exceed 20 Min

Result

P
er

ce
nt

ag
e

of
 P

ro
bl

em
s

Scheduler SMD (0) SMD (99999) SMD (MNA) SMD (AUF)

Figure 6-11. Solution Results vs. Multiplier Type / Scheduler

Table 6-6. Solution Time vs. Multiplier Type / Scheduler

Approach Count Minimum Average Maximum Std Dev
Scheduler 31 0.00 66.75 1030.23 216.95
SMD (0) 38 0.02 38.81 724.00 144.12
SMD (99999) 12 0.02 61.89 724.04 199.68
SMD (MNA) 36 0.02 56.75 724.03 156.85
SMD (AUF) 40 0.02 67.02 960.06 207.34

Solution Time (seconds)

Solution results are also shown in Figure 6-12 versus the program designs. Program designs

correspond to and are numbered consistent with Figure 6-10. The program design with no

program-level constraints, Design A, was solved to optimality 100% of the time within the

20-minute time limit, while the design with renewable resources, nonrenewable resources, and

precedence constraints at the program-level, Design D, was solved to optimality only 41.7% of the

time within the 20-minute time limit.

 6-47

Solution Results vs. Program Design

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

A B C D E

Result

P
er

ce
nt

ag
e

of
 P

ro
bl

em
s

Optimal Exceed 20 Min

Figure 6-12. Solution Results vs. Program Design

Table 6-7 reports solution time as a function of problem characteristics. The table shows each

program design, the difficulty imposed by the program and project constraints (as discussed in the

previous section), and each multiplier approach. The corresponding count of and solution times of

problems solved to optimality within the time limit are shown. Again, no method clearly dominates

the others as one method solves more problems in some cases than other methods and solves fewer

problems in other cases.

Since no method of finding multipliers is better in all cases than the others, the AUF method is

used to determine multipliers for the remainder of testing since it succeeded at producing the most

optimal solutions within the imposed time limit.

Acceleration Schemes. The set of 54 problems were solved with and without the acceleration

schemes, this time generating 1000 solutions from each subproblem at each iteration. Table 6-8

shows the number of problems that were solved to optimality within the imposed 20-minute time

limit, as well as solution times. Using the acceleration schemes not only resulted in finding more

solutions, but the average solution time and standard deviation were smaller. Acceleration schemes

were, therefore, used in testing and are, in fact, represented in the results presented above for

multiplier methods.

 6-48

Table 6-7. Solution Time vs. Problem Difficulty

Program
Design

Program
Difficulty

Project
Difficulty

Multiplier
Approach Count Minimum Average Maximum Std Dev

A NA Easy 0 3 0.03 0.04 0.06 0.01
99999 3 0.02 0.04 0.06 0.02
MNA 3 0.03 0.04 0.06 0.01
AUF 3 0.02 0.04 0.07 0.02

Hard 0 3 0.05 245.97 724.00 338.07
99999 3 0.05 246.01 724.04 338.07
MNA 3 0.04 245.99 724.03 338.07
AUF 3 0.04 246.00 724.03 338.07

B Easy Easy 0 3 0.03 0.04 0.06 0.01
99999 1 4.32 4.32 4.32 0.00
MNA 3 0.04 0.05 0.07 0.01
AUF 3 0.04 0.05 0.07 0.01

Hard 0 2 1.14 7.37 13.60 6.23
99999 0 na na na na
MNA 1 1.14 1.14 1.14 0.00
AUF 2 1.14 7.40 13.66 6.26

Hard Easy 0 3 0.03 0.04 0.05 0.01
99999 0 na na na na
MNA 3 0.03 0.04 0.05 0.01
AUF 3 0.03 0.04 0.05 0.01

Hard 0 2 0.09 76.74 153.38 76.65
99999 0 na na na na
MNA 3 2.38 110.84 221.75 89.57
AUF 1 2.49 2.49 2.49 0.00

C Easy Easy 0 3 0.03 0.04 0.05 0.01
99999 1 0.04 0.04 0.04 0.00
MNA 3 0.02 0.04 0.06 0.02
AUF 3 0.02 0.04 0.06 0.02

Hard 0 3 0.28 185.44 546.21 255.13
99999 0 na na na na
MNA 2 0.30 299.47 598.64 299.17
AUF 3 0.29 203.08 598.62 279.72

Hard Easy 0 1 0.09 0.09 0.09 0.00
99999 1 0.05 0.05 0.05 0.00
MNA 1 0.05 0.05 0.05 0.00
AUF 3 0.04 327.34 960.06 447.49

Hard 0 1 2.10 2.10 2.10 0.00
99999 0 na na na na
MNA 0 na na na na
AUF 1 6.94 6.94 6.94 0.00

D Easy Easy 0 2 0.03 0.04 0.04 0.00
99999 1 0.03 0.03 0.03 0.00
MNA 2 0.03 0.03 0.03 0.00
AUF 2 0.03 0.03 0.03 0.00

Hard 0 2 2.41 2.59 2.76 0.17
99999 0 na na na na
MNA 1 2.27 2.27 2.27 0.00
AUF 2 2.26 2.57 2.87 0.31

Hard Easy 0 1 0.03 0.03 0.03 0.00
99999 1 0.03 0.03 0.03 0.00
MNA 1 0.03 0.03 0.03 0.00
AUF 2 0.03 153.15 306.27 153.12

Hard 0 1 0.41 0.41 0.41 0.00
99999 0 na na na na
MNA 1 48.16 48.16 48.16 0.00
AUF 1 5.30 5.30 5.30 0.00

E Easy Easy 0 3 0.02 0.04 0.05 0.01
99999 1 0.05 0.05 0.05 0.00
MNA 3 0.02 0.03 0.05 0.01
AUF 3 0.02 0.03 0.04 0.01

Hard 0 1 0.53 0.53 0.53 0.00
99999 0 na na na na
MNA 1 97.20 97.20 97.20 0.00
AUF 1 0.49 0.49 0.49 0.00

Hard Easy 0 3 0.02 0.03 0.05 0.01
99999 0 na na na na
MNA 3 0.03 0.03 0.04 0.00
AUF 3 0.03 0.04 0.05 0.01

Hard 0 1 3.13 3.13 3.13 0.00
99999 0 na na na na
MNA 2 9.38 112.05 214.72 102.67
AUF 1 9.26 9.26 9.26 0.00

Solution Time (seconds)

 6-49

Table 6-8. Value of Acceleration Schemes

Acceleraton
Schemes? Count Minimum Average Maximum Std Dev

No 28 0.01 92.33 846.48 227.91
Yes 34 0.02 50.59 903.07 193.39

Solution Time (seconds)

Choice of k. The test set of 54 problems was again solved, now for varying levels of k. The

number of solutions, k, generated by each subproblem was varied from 100 to 1000 to 10,000.

Figure 6-13 shows the percentage of problems solved to optimality within the 20-minute time limit

for each level of k, while Table 6-9 lists solution time statistics for these problems. While more

problems were solved with k = 100, a value of k = 100 did require, in some cases, more iterations.

Figure 6-14 shows the number of iterations required to find the optimal solutions for each level of

k.

Solution Results vs. k

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Optimal Exceed 20 Min

Result

P
er

ce
nt

ag
e

of
 P

ro
bl

em
s

k = 100 k = 1000 k = 10000

Figure 6-13. Solution Results vs. k

Note that in 9 cases, k = 100 required more than one iteration. Only one case of k = 1000

required more than one iteration (it required seven iterations) and k = 10,000 never required more

 6-50

than one iteration. Since there is a tradeoff between the reduced time to solve the subproblems for

fewer solutions and the risk of having to iterate more than once, solution times for the varying

levels of k need to be compared.

Table 6-9. Solution Times vs. k

Approach Count Minimum Average Maximum Std Dev
k = 100 40 0.02 75.19 783.87 212.44
k = 1000 34 0.02 50.59 903.07 193.39
k = 10000 32 0.03 64.69 960.13 219.18

Solution Time (seconds)

Table 6-10 shows solutions times vs. k, arranged by program design. The easiest program

design is Design A, having no program-level constraints. Since any optimal to each of the

subproblems is feasible, and thus optimal, to the master problem, generating a single optimal for

each subproblem would be sufficient for finding an optimal solution to the original problem. As

expected, the smaller k is, the faster the algorithm solves a problem for Design A.

Iterations Required vs. k

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

Result

N
um

be
r

of
 P

ro
bl

em
s

k = 100 k = 1000 k = 10000

Figure 6-14. Iterations Required vs. k

 6-51

For the other program designs, the results in Table 6-10 are not so clear since one value of k

may solve fewer problems than another value of k, but the average solution time for the problems

that were solved is lower. To better understand the distribution of solution times, refer to Figure

6-15.

Table 6-10. Solution Time vs. k

Program
Design k Count Minimum Average Maximum Std Dev

A 100 6 0.02 123.01 724.01 268.83
1000 6 0.03 133.16 734.06 269.74
10000 6 0.04 305.84 960.13 427.71

B 100 10 0.02 16.79 153.39 45.71
1000 8 0.02 0.23 0.96 0.30
10000 8 0.05 2.45 6.40 2.37

C 100 8 0.03 69.58 546.23 180.19
1000 6 0.03 0.23 0.58 0.21
10000 5 0.04 3.79 9.80 4.36

D 100 6 0.03 0.87 2.75 1.16
1000 5 0.02 1.74 7.66 2.98
10000 5 0.05 18.40 82.51 32.24

E 100 10 0.02 153.99 783.87 307.85
1000 9 0.02 101.02 903.07 283.57
10000 8 0.03 13.05 51.06 21.80

Solution Time (seconds)

Figure 6-15 shows the distribution of solution times for each value of k. The vertical segments

of the graph show the solution times for the corresponding value of k. The times are plotted on a

logarithmic scale to better show the distribution of times at the bottom of the graph.

While most solution times are clustered at the bottom of the plot (relatively short solution

times), there are a few for each value of k with relatively long solution times. Perhaps most

noteworthy is the behavior of points in the middle of the plot. As k increases, there is a general

shift of times upward, as well as a spreading out of solution times.

Given the greater number of problems solved and generally faster solution times with k = 100,

generating 100 solutions for each subproblem at each iteration of the algorithm appears to be the

most effective, even if, on occasion, more iterations must be made.

Comparison to Single-Project Scheduler. As previously seen in Table 6-6, the decomposition

approach outperformed the single-project Scheduler in terms of number of problems solved within

a 20-minute time limit and in terms of solution time.

 6-52

Log Distribution of Solution Times vs. k

0.01

0.1

1

10

100

1000
S

ol
ut

io
n

T
im

e
(L

og
 S

ca
le

)

k = 100 k = 1000 k = 10000

Figure 6-15. Log Distribution of Solution Times vs. k

Non-Convergence. While the focus of the analysis in this section has been on the problems

that solved within a 20-minute time limit, the question remains how long it takes to solve the other

 6-53

problems. A number of the these other problems were solved with a two-hour time limit. One

problem of Design B, with both difficult program- and project-level constraints, solved to

optimality in just over 42 minutes, while a problem of Design C, also with difficult constraints,

required just over 1.5 hours to solve to optimality.

On the other hand, a problem of type D and a problem of type E still failed to solve in the time

allotted. In both cases, the objective function value found in 2 hours was no better than that found

in 20 minutes. Because of the misuse of the Sweeney-Murphy Optimality Condition as being

necessary and not just sufficient, it is possible that the failure to establish an optimal solution

results from an inability to classify the best found solution as optimal rather than not being able to

find an optimal solution. For this reason, finding a necessary condition to establish optimality is a

worthwhile area for future research.

Summary and Conclusions

The decomposition approach presented in this chapter proved effective for solving the

MRCMPSP-GPR/EXP, even for problems with as many as 50 activities. The decomposition

approach solved more problems than the single-project Scheduler and in less time. The AUF

method of determining Lagrangian multipliers appeared most useful, as did generating 100

solutions to each subproblem at each iteration. The lack of a necessary condition to establish

optimality makes it difficult to determine if any given problem will converge to an optimal solution.

However, even in the cases where the best-found solution cannot be established as optimal, the set

of k solutions produced by the algorithm may still be considered good heuristic solutions.

7-1

VII. Contributions and Recommendations

This chapter presents an overview of the research in this dissertation, outlining the most

significant contributions of the research (summarized in Table 7-1) and suggesting areas for

further research.

Contributions

This dissertation introduced the Multi-Modal, Resource-Constrained, Multi-Project Scheduling

Problem with Generalized Precedence and Expediting Resources (MRCMPSP-GPR/EXP) to the

project scheduling literature. The MRCMPSP-GPR/EXP builds upon the classic Resource-

Constrained Project Scheduling Problem (RCPSP), extending the RCPSP for multiple activity

execution modes, generalized precedence with minimal and maximal time lags, and expediting

resources, all within a multi-project framework. The multi-project framework for the MRCMPSP-

GPR/EXP allows for generalized precedence relationships and resource constraints (both

renewable and nonrenewable) at the program level, not just at the project level. A mathematical

formulation of the MRCMPSP-GPR/EXP was constructed and extended from the 0-1 formulation

of the RCPSP by Pritsker et al. (1969).

A problem generator for the MRCMPSP-GPR/EXP was developed as part of this research.

The Program Attributes Generator with Expediting Resources (PAGER) gives the user extensive

flexibility to define the parameters of the problem to be generated. This allows the user to craft

any of the problems diagrammed in Figure 7-1 (repeated from Figure 2-1), all of which are special

cases of the MRCMPSP-GPR/EXP.

The most important feature of PAGER is the method it uses to construct the underlying project

network structure. PAGER uses the Restrictiveness measure proposed by Thesen (Thesen, 1977),

which defines the degree to which a network is constrained by its component arcs. This measure is

recognized as being far superior to other measures of network complexity, and PAGER is the first

generator to directly exploit this particular measure. Use of the Thesen Restrictiveness measure

gives the user of PAGER unparalleled control over the complexity of the project network. Such

control is imperative in designing an experiment to evaluate any algorithm for solving a project

scheduling problem since the effectiveness of an algorithm is directly impacted by the complexity

of the project network (Kolisch et al., 1992).

7-2

Project Scheduling Problem

Resource-Constrained
Project Scheduling Problem

Multi-Modal,
Resource-Constrained

Project Scheduling Problem

Resource-Constrained
Multi-Project,

Scheduling Problem

Generalized,
Resource-Constrained

Project Scheduling Problem

Constrained
Resources

Multiple
Projects

Multiple
Modes

Minimal
Lags

Generalized,
Multi-Modal,

Resource-Constrained
Project Scheduling Problem

Multi-Modal,
Resource-Constrained

Project Scheduling Problem
w/ Generalized Precedence

Maximal
Lags

Multi-Modal,
Resource-Constrained

Multi-Project
Scheduling Problem

Generalized,
Multi-Modal,

Resource-Constrained
Multi-Project

Scheduling Problem

Multi-Modal,
Resource-Constrained

Multi-Project
Scheduling Problem

w/ Generalized Precedence
& Expediting Resources

Multi-Modal,
Resource-Constrained

 Project Scheduling Problem
w/Expediting Resources

Resource Critical
Project Crashing Problem

Additional
Resources

Figure 7-1. Problem Hierarchy

The principal focus of this research was the development of two methodologies for solving the

MRCMPSP-GPR/EXP, one treating any problem instance as a single project, the other exploiting

the decomposability of multi-project instances of the MRCMPSP-GPR/EXP.

7-3

The first methodology for solving the MRCMPSP-GPR/EXP is a specialized, implicit

enumeration algorithm based on the scheme by Talbot (1982) for the Multi-Modal RCPSP

(MRCPSP). Talbot’s algorithm was extended for generalized precedence with minimal and

maximal time lags and for expediting resources. Since the objective of the MRCMPSP-GPR/EXP

is to minimize project costs, including those for expediting resources, the objective function of the

MRCMPSP-GPR/EXP is a non-regular measure of performance. The non-regularity of the

objective function makes the majority of the bounding rules in the literature inapplicable for the

MRCMPSP-GPR/EXP. Consequently, special bounding rules were developed and incorporated

into the implicit enumeration algorithm. Testing of the algorithm with and without the new

bounding rules showed a significant acceleration in the speed of the algorithm with the bounding

rules. The algorithm was also demonstrated to be a significant improvement over a general 0-1

programming approach with Special Ordered Sets (SOS) of variables as implemented in IBM’s

Optimization Solutions Library (OSL). No other approach in the literature is capable of solving

the MRCMPSP-GPR/EXP, making the specialized algorithm developed in this dissertation the first

of its kind.

An additional feature built into the specialized single-project algorithm is the ability to

generate a set of k-best solutions, not just a single optimal. The set of k-best solutions may be

useful to a decision-maker who might prefer one mathematically optimal solution over another, or

even a mathematically inferior (but close to optimal) solution, for non-mathematical reasons. The

set of k-best solutions is also required by the decomposition approach, which is the second

methodology developed for solving the MRCMPSP-GPR/EXP.

The decomposition approach for solving the MRCMPSP-GPR/EXP is based on the work by

Sweeney and Murphy (1979). The approach uses Lagrangian relaxation to decompose the original

problem into a number of subproblems (representing the multiple projects) and a master problem

(containing the program-level constraints). A number of multipliers for relaxing the original

problem were developed and tested, the most efficient of which is based on the Average Utilization

Factor (AUF) described by Kurtulus and Davis (1982) and Kurtulus and Narula (1985).

Since Sweeney and Murphy (1979) do not specify how to solve the subproblems or the master

problem, subproblems were solved to generate a set of k-best solutions using the single-project

algorithm previously described. An implicit enumeration algorithm for solving the master problem

was also developed as part of this research. The decomposition approach was

7-4

Table 7-1. Summary of Key Contributions

Contribution Extension New Feature Theoretical

Mathematical Formulation of MRCMPSP-GPR/EXP X

Problem Generator for MRCMPSP-GPR/EXP X X X

Directly Exploited Thesen Restrictiveness as
Measure of Network Complexity

 X

Made Tailorable to Vast Array of Problem Types X

Specialized Algorithm for Single-Project Instances of
the MRCMPSP-GPR/EXP

X X X

Addressed Generalized Precedence and
Expediting Resources

 X

Developed New Set of Bounding Rules X

Incorporated Approach for Generating Set of k-
Best Solutions

 X

Decomposition Algorithm for Multi-Project Instances
of the MRCMPSP-GPR/EXP

X X

Built Upon Specialized Algorithm for Single-
Project Instances

X

Addressed Generalized Precedence, Renewable &
Nonrenewable Resources, and Expediting
Resources at the Program Level

 X

Developed New Approaches for Obtaining
Lagrangian Multipliers

 X

Developed Scheme for Choosing Number of
Solutions to Generate from Each Subproblem

 X

Developed Special Acceleration Schemes X

Incorporated Approach for Generating Set of k-
Good Solutions

X

Discovered Error in Sweeney-Murphy (1979)
Decomposition Algorithm

 X

7-5

further enhanced by three acceleration schemes. Testing showed that more problems could be

solved within a fixed time limit with the decomposition approach than by solving the problems as a

single project. Testing also showed that the acceleration schemes further increase the number of

problems which can be solved within a fixed time limit. Finally, multiple choices of k, the number

of best solutions generated for each subproblem, were tested to determine their impact on solution

time. It was shown that, in general, a choice of 100-best solutions from each subproblem led to the

most problems solved within a fixed solution time.

Table 7-1 provides a summary of key research contributions. For each contribution, Table 7-1

identifies whether the contribution is an extension of research presented in the literature or a new

feature which has not been addressed in the literature, and whether or not the contribution is of a

theoretical (versus applied) nature.

Recommendations

The research presented in this dissertation unfolded a number of areas for further research.

They include:

1. Van Hove (1998) introduced the concept of generalized precedence with time lags

dependent on the mode chosen for the related activities. Although Van Hove did this for

minimal lags only, PAGER could easily be expanded to include generalized precedence

with minimal and maximal lags based on mode selection. To expand PAGER in this way

would require a straightforward re-definition of the array which describes the generalized

precedences to add two additional indices, specifying the mode selected for each of the

related activities. While such an expansion would not be a theoretical advancement, it

would allow the flexibility necessary to generate problems of the type proposed by Van

Hove.

2. Both solution algorithms developed in this dissertation (the single-project Scheduler and

the multi-project decomposition algorithm) have been used to find optimal solutions (or

sets of k-best solutions). Both algorithms, however, could be terminated before completion

to provide a heuristic solution (or set of solutions) to a problem. As discussed in Chapter

V, the single-project Scheduler often finds an optimal solution to a problem very quickly,

even if it requires an extensive amount of time to verify the optimality of the solution. If,

each time one of the algorithms found a solution, the solution were compared to a

7-6

theoretical lower bound (e.g., the linear program relaxation), it might be possible to use the

algorithms on much larger problems to find a solution within a desired tolerance of the

theoretical lower bound (e.g., 5-10%). One advantage of both algorithms in this

dissertation is that, by their nature, they will always provide feasible solutions only. This

is not the case with all heuristics (Drexl and Grunewald, 1993). Therefore, both

algorithms, used as heuristics, might favorably compare to other heuristics in the literature.

3. The decomposition approach developed in this dissertation should easily lend itself well to

parallelization. Since each subproblem is independent of the others, they could be solved

in parallel, thereby reducing (perhaps significantly) the overall time required to solve a

problem. There is, of course, some computational overhead associated with solving

problems in parallel, but the time saved in solving the subproblems would most likely

compensate for this overhead. This should be especially true the more subproblems (or

projects) there are in the problem.

4. The Optimality Theorem presented by Sweeney and Murphy (1979: 1131) provides a

sufficient condition to establish the optimality of the best solution to the decomposition

master problem. Chapter VI showed, however, that the Sweeney-Murphy Optimality

Theorem provides no necessary conditions. Consequently, the decomposition algorithm

presented by Sweeney and Murphy may fail to terminate successfully, even if an optimal

solution to the original problem has been found. Development of a necessary condition

would significantly advance the functionality of the Sweeney-Murphy Decomposition

approach.

Summary

Compared to many disciplines, the field of project scheduling is still in its infancy. This

dissertation has advanced this growing field, introducing the MRCMPSP-GPR/EXP to the

literature and contributing two methodologies for solving the MRCMPSP-GPR/EXP. This

dissertation has also contributed to the more general fields of networks (in particular, the

generation of networks) and integer programming (especially the decomposition of large problems).

Like all research, this dissertation has also fostered new questions and areas for research. The

hope of this researcher is that the body of knowledge will continue to grow and that larger and

more important problems can be addressed.

 A-1

APPENDIX A. Notation

Overview

This appendix provides a Rosetta Stone of notation used throughout this dissertation. The

following sections list, respectively: (1) the notation used to describe the different types of project

scheduling problems, (2) an alphabetical listings of abbreviations and acronyms, and (3)

mathematical notation. Except as otherwise noted, the notation presented here is used consistently

throughout this dissertation.

Problem Types

 GMRCMPSP: Generalized, Multi-Modal, Resource-Constrained, Multi-Project
Scheduling Problem

 GMRCPSP: Generalized, Multi-Modal, Resource-Constrained Project
Scheduling Problem

 MPSP: Multi-Project Scheduling Problem

 MRCMPSP-GPR: Multi-Modal, Resource-Constrained, Multi-Project Scheduling
Problem with Generalized Precedence

 MRCMPSP-GPR/EXP: Multi-Modal, Resource-Constrained, Multi-Project Scheduling
Problem with Generalized Precedence and Expediting Resources

 MRCPSP: Multi-Modal, Resource-Constrained Project Scheduling Problem

 MRCPSP-GPR: Multi-Modal, Resource-Constrained Project Scheduling Problem
with Generalized Precedence

 MRCPSP-GPR/EXP: Multi-Modal, Resource-Constrained Project Scheduling Problem
with Generalized Precedence and Expediting Resources

 NPVP: Net Present Value Problem

 PSP: Project Scheduling Problem

 RCMPSP: Resource-Constrained, Multi-Project Scheduling Problem

 RCPSP: Resource-Constrained Project Scheduling Problem

Abbreviations and Acronyms

 ATO: Air Tasking Order

 AUF: Average Utilization Factor

 CI: Complexity Index

 CNC: Coefficient of Network Complexity

 A-2

 CPM: Critical Path Method

 (D): Lagrangian Dual of Problem (P)

 ERS: Expediting Resource Strength

 IP: Integer program

 GCPM: Generalized Critical Path Method

 LP: Linear program

 (MP): Sweeney-Murphy Master Problem

 (MP2): Revised Sweeney-Murphy Master Problem

 (P): LP formulation of project scheduling problem

 PAGER: Program Attributes Generator with Expediting Resources

 RS: Resource Strength

 RT: Network Restrictiveness (of Thesen)

 SOS: Special Ordered Set

 ? ??pSP : Sweeney-Murphy Subproblem p

Mathematical Notation

The notation provided in this section is listed alphabetically. However, any given letter may be

represented by its Roman or Greek equivalents, its lower or upper cases, or by different formats

(i.e., italics and bold). The representation of a letter denotes the type of mathematical entity it

symbolizes. Using the letter “x” (and its Greek equivalent “? ”) as an example, the following list

correlates the letter representation to the mathematical entity and lays out the ordering of notation

based on its representation.

 x: Scalar (e.g., index, constant)

 X: Scalar

 X: Scalar (e.g., upper bound on index, constant)

 X: Set

 x: Vector

 X: Matrix

 ? : Vector

 ? : Function

 A-3

Notation.

 0: (Zero) Index associated with program-level sets (i.e., the program is Project 0)

 aij: Binary variable: 1, if activity i directly precedes activity j; 0, otherwise

 at: Cost for completing the program at time t

 A: Set of network arcs (Chapter IV only)

 A: Set of all schedules

 AE: Set of activities which are eligible for labeling and have no generalized precedence
relationship (used in the GCPM)

 AL: Set of activities which are eligible for labeling and have a generalized precedence
relationship (used in the GCPM)

 AS: Set of activities which have been labeled (used in the GCPM)

 A1: Set of activities where each activity is a generalized predecessor every other
activity in the set (used in the GCPM)

 A: Adjacency matrix

pNA : Matrix of program-level generalized precedence constraint coefficients associated

with project p

pHA : Matrix of program-level expediting resource constraint coefficients associated

with project p

 pA : Matrix of program-level constraint coefficients associated with project p

 pb : Vector of right-hand side coefficients of constraint set p

pNB : Matrix of project-level generalized precedence constraint coefficients associated

with project p

pHB : Matrix of project-level expediting resource constraint coefficients associated with

project p

 pB : Matrix of constraint coefficients pertaining to project p

 N
k p

c : Cost of nonrenewable expediting resources required by pk

 N
qc : Cost of an expediting unit of nonrenewable resource q

 R
k p

c : Cost of renewable expediting resources required by pk

 R
qtc : Cost of an expediting unit of renewable resource q at time t

 pC : Accumulated cost of the current solutions of Subproblems 1 through p

 CNCp: Coefficient of network complexity for project p

 A-4

 pc : Vector of costs associated with project p

iimd : Duration of activity i in mode m

 min
pd : Minimum duration of activities in project p

 max
pd : Maximum duration of activities in project p

 dpim: Duration of activity p(i) in mode m

 D: Program planning horizon

 Dp: Planning horizon of project p

 p? : Due date factor of project p (Chapter IV only)

 p? : Difference between the worst and best solutions to Subproblem p

 min
p? : Minimum due date factor of project p (Chapter IV only)

 max
p? : Maximum due date factor of project p (Chapter IV only)

 ? : Difference between upper bound and lower bound of (MP)

 min
ij? : Minimal start-start lag time between activities i and j

 max
ij? : Maximal start-start lag time between activities i and j

 epi: Early start time of activity p(i)

 Ep: Early start time of project p

 min
pENC : Minimum expediting nonrenewable resource base cost for project p

 max
pENC : Maximum expediting nonrenewable resource base cost for project p

 min
pERC : Minimum expediting renewable resource base cost for project p

 max
pERC : Maximum expediting renewable resource base cost for project p

 min
?pERS : Minimum expediting resource strength for resource type ? for project p

 max
?pERS : Maximum expediting resource strength for resource type ? for project p

 RF? : Resource factor tolerance

 F: Early program completion time

 Fp: Early completion time of project p

 ? : Objective function of a scheduling problem

)(S? : Objective function value of a particular schedule S

 A-5

 G: Graph (Chapter IV only)

 G: Program completion due date

 Gp: Completion due date of project p

 N
qh : Units of expediting, nonrenewable resource q used

 R
qth : Units of expediting, renewable resource q used at time t

 N
pqH : Units of expediting, nonrenewable resource q remaining after projects 1 through p

have been added to the program schedule

 N
qH : Units of expediting, nonrenewable resource q available

 R
pqtH : Units of expediting, renewable resource q remaining in time t after projects 1

through p have been added to the program schedule

 R
qtH : Units of expediting, renewable resource q available at time t

 i: Index associated with activities / jobs (see also j). Also, index associated with
levels of a search tree.

 Ip: Set of activities / jobs in project p

 j: Index associated with activities / jobs (see also i)

 J: Number of activities / jobs

 Jp: Number of activities / jobs in project p

 min
pJ : Minimum number of activities / jobs in project p

 max
pJ : Maximum number of activities / jobs in project p

 k: Index associated with solutions to a problem. Also, used generically as in “k-best”
solutions

 pK : Number of solutions to project p

 min
pqK : Minimum total demand for resource q in project p

 max
pqK : Maximum total demand for resource q in project p

 lpi: Late start time of activity p(i)

 Lp: Lag coefficient of project p

 min
pL : Minimum lag coefficient of project p

 max
pL : Maximum lag coefficient of project p

 ? ?µLB : Lower bound on solution to Problem (P)

 A-6

 LFp: Fraction of arcs in project p which denote generalized precedence

 min
pLL : Lower bound on the minimum lag times for project p

 max
pLL : Upper bound on the minimum lag times for project p

 min
pLU : Lower bound on the maximum lag times for project p

 max
pLU : Upper bound on the maximum lag times for project p

 k
p? : Zero-one variable associated with the kth solution to project p

 ? : Vector of variables ? representing solution to Sweeney-Murphy Master Problem

 mj: Execution mode of activity j

pkM : Set of mode assignments associated with solution pk

 min
pM : Minimum number of modes per activity in project p

 max
pM : Maximum number of modes per activity in project p

 piM : Set (or number) of execution modes for activity i of project p

 min
0pMC : Minimum base mode cost

 max
0pMC : Maximum base mode cost

 min
1pMC : Minimum mode cost increment

 max
1pMC : Maximum mode cost increment

 m: J-tuple of the execution modes of each activity j, j = 1, … , J

 µ : Lagrangian multipliers used in Sweeney-Murphy Decomposition

 nd: Number of disjunctive arcs in a graph

 N: Set of network nodes (Chapter IV only)

 Ni: Set of activities which have an explicit generalized precedence relationship with
activity i (see Definition 4-16)

 *
iN : Set of activities which have an implicit generalized precedence relationship with

activity i (see Definition 4-17)

 Np: Set of generalized precedence relationships in project p

 Oi: Set of activities which precede activity i

 Op: Set of standard precedence relations within project p

 p: Index associated with projects

 p(i): Activity i of project p

 A-7

 P: Restrictiveness of a graph

 ? ?1GP ?p : Probability of time-increasing activity costs for project p

 ? ?2GP ?p : Probability of time-decreasing activity costs for project p

)1(P ?Fp? : Probability of duration-constant demands for resource type ? for project p

)2(P ?Fp? : Probability of duration-nonincreasing demands for resource type ? for project p

 P: Number / set of projects in a multi-project program

 min
pP : Maximum number of predecessors per activity for project p

 min
pJP : Minimum number of finish activities in project p

 max
pJP : Maximum number of finish activities in project p

 00PEN : Program base penalty

 01PEN : Program penalty increment

 min
0pPEN : Minimum project base penalty

 max
0pPEN : Maximum project base penalty

 min
1pPEN : Minimum project penalty increment

 max
1pPEN : Maximum project penalty increment

 P: Denotes a scheduling problem

 N
qp : Price charged to a project for nonrenewable resource q

 R
qtp : Price charged to a project for renewable resource q in time period t

 ? : Number of possible permutations of a number sequence (Chapter IV only)

 ? : Total cost difference between a time only and a resource feasible schedules

 NQ : Set of all nonrenewable resources

 NQ0 : Set of program-level nonrenewable resources

 N
pQ : Set of nonrenewable resources unique to project p

 RQ : Set of all renewable resources

 RQ0 : Set of program-level renewable resources

 R
pQ : Set of renewable resources unique to project p

 A-8

 min
?pQ : Minimum number of resources of type ? requested per job in project p

 max
?pQ : Maximum number of resources of type ? requested per job in project p

 rij: Binary variable: 1, if activity j is reachable from activity i; 0, otherwise

 N
qimi

r : Units of nonrenewable resource q required by activity i in mode mi

 N
k p

r : Total demand by solution pk for nonrenewable resource q

 N
pimqr : Units of nonrenewable resource q required by activity p(i) in mode m

 R
qimi

r : Units of renewable resource q required by activity i in mode mi

 R
tk p

r : Total demand by solution pk for nonrenewable resource q at time t

 R
pimqr : Units of renewable resource q required by activity p(i) in mode m

 min
?pr : Minimum resource demand for resource type ? for project p

 max
?pr : Maximum resource demand for resource type ? for project p

 RT: Restrictiveness measure of Thesen

 N
pqR : Units of nonrenewable resource q remaining after projects 1 through p have been

added to the program schedule

 R
pqtR : Units of renewable resource q remaining in time t after projects 1 through p have

been added to the program schedule

 N
qR : Units of nonrenewable resource q available

 R
qtR : Units of renewable resource q available at time t

 ?pRF : Resource factor of resource type ? for project p

 min
?pRS : Minimum resource strength for resource type ? for project p

 max
?pRS : Maximum resource strength for resource type ? for project p

 R: Reachability matrix

 p? : Release date of project p

 min
p? : Minimum release date of project p

 max
p? : Maximum release date of project p

 sj: Start time of activity j

 A-9

 Si: Set of activities which succeed activity i

pkS : Set of start time assignments associated with solution pk

 max
pS : Maximum number of successors per activity for project p

 min
1pS : Minimum number of start activities in project p

 max
1pS : Maximum number of start activities in project p

 s: J-tuple of the start time of each activity j, j = 1, … , J

 S: Schedule of problem P

 UB: Upper bound on solution to Problem (P)

 tolCNC: Tolerance on coefficient of network complexity

 tolTH: Tolerance on Thesen Restrictiveness

 T: Dummy terminal activity of a program

 Tp: Dummy terminal activity of project p

 THp: Thesen Restrictiveness measure for project p

 ? : Resource type

 min

p
? : Minimum number of resources of type ? for project p

 max

p
? : Maximum number of resources of type ? for project p

 wpi: [epi, lpi], the start time window of activity p(i)

 Wij: Directed path from activity i to activity j

 xpimt: Binary variable: 1, if activity p(i) is executed in mode m and starts at time t; 0,
otherwise

 tTp
x : Binary variable: 1, if terminal activity Tp of project p starts at time t; 0, otherwise

 Ttx : Binary variable: 1, program terminal activity T starts at time t; 0, otherwise

pHx : Integer variables associated with the expediting resources of project p

 px : Vector of variables associated with project p

 k
py : kth solution to project p

 z: Objective function value of a mathematical programming problem

B-1

Appendix B. PAGER Input

This appendix provides an example of a Specification File used to define the parameters

required by the Program Attributes Generator with Expediting Resources (PAGER).

Problem Generator Input

**
SPECIFICATIONS:
**
GENERAL INFORMATION -
Problem Name : Test Program
**
PROGRAM -
Number of Projects : 4
Minimum Program Due Date Factor : 0.00
Maximum Program Due Date Factor : 0.00
**
PROJECTS - <---------FOR EACH PROJECT-------->
Minimum Number of Jobs : 4 4 4 4 4
Maximum Number of Jobs : 4 4 4 4 4
Minimum Project Release Dates : 1 1 1 1 1
Maximum Project Release Dates : 1 1 1 1 1
Minimum Project Due Date Factors : 0.00 0.00 0.00 0.00 0.00
Maximum Project Due Date Factors : 0.00 0.00 0.00 0.00 0.00
**
MODES - <---------FOR EACH PROJECT-------->
Minimum Number of Job Modes : 1 1 1 1 1
Maximum Number of Job Modes : 1 1 1 1 1
Minimum Job Duration : 1 1 1 1 1
Maximum Job Duration : 10 10 10 10 10
**
PROJECT NETWORKS - <---------FOR EACH PROJECT-------->
Minimum Number of Start Jobs : 1 1 1 1 1
Maximum Number of Start Jobs : 1000 1000 1000 1000 1000
Minimum Number of End Jobs : 1 1 1 1 1
Maximum Number of End Jobs : 1000 1000 1000 1000 1000
Maximum Successors Per Job : 1000 1000 1000 1000 1000
Maximum Predecessors Per Job : 1000 1000 1000 1000 1000
Min Start-Start Lag Fraction : 0.20 0.20 0.20 0.20 0.20
Max Start-Start Lag Fraction : 0.20 0.20 0.20 0.20 0.20
Min on Lower Bound of Lag : -0.2 -0.2 -0.2 -0.2 -0.2
Max on Lower Bound of Lag : 0.2 0.2 0.2 0.2 0.2
Min on Upper Bound of Lag : 0.4 0.4 0.4 0.4 0.4
Max on Upper Bound of Lag : 0.8 0.8 0.8 0.8 0.8
Use CNC (Arcs/Nodes) (1=Yes) : 0
Network Complexity Tolerance : 0.00
CNC (Arcs/Nodes) : 0.00 0.00 0.00 0.00 0.0
Use Thesen Restrictiveness (1=Yes) : 1
Restrictiveness Tolerance : 0.1
Thesen Restrictiveness : 0.75 0.75 0.75 0.75 0.75
**
PROGRAM NETWORK -
Min Proj Lag for Each Pair : 0.00 0.00 0.00 0.00
Max Proj Lag for Each Pair : 0.00 0.00 0.00 0.00
Maximum Inter-Proj Successors/Job : 1000
Maximum Inter-Proj Predecessors/Job : 1000
Min Start-Start Lag Fraction : 0.20
Max Start-Start Lag Fraction : 0.20
Min on Lower Bound of Lag : -0.2
Max on Lower Bound of Lag : 0.2
Min on Upper Bound of Lag : 0.4
Max on Upper Bound of Lag : 0.8
Program-Level CNC : 0.00
Program-Level Restrictiveness : 0.25

B-2

**
RENEWABLE RESOURCES - PROGRAM <----FOR EACH PROJECT---->
Min Number of Renewable Resources : 3 1 1 1 1 1
Max Number of Renewable Resources : 3 1 1 1 1 1
Min Number of Res Requested Per Job : 0 0 0 0 0 0
Max Number of Res Requested Per Job : 10 10 10 10 10 10
Renewable Resource Factor : 1.00 1.00 1.00 1.00 1.00 1.00
Minimum Per-Period Res Demand : 1 1 1 1 1 1
Maximum Per-Period Res Demand : 10 10 10 10 10 10
Minimum Renew Resource Strength : 0.50 1.00 1.00 1.00 1.00 1.00
Maximum Renew Resource Strength : 0.50 1.00 1.00 1.00 1.00 1.00
Min Exped Renew Resource Strength : 0.50 0.00 0.00 0.00 0.00 0.00
Max Exped Renew Resource Strength : 0.50 0.00 0.00 0.00 0.00 0.00
Prob of Duration Constant Demand : 0.00 0.00 0.00 0.00 0.00 0.00
**
NONRENEWABLE RESOURCES - PROGRAM <----FOR EACH PROJECT---->
Min Number of Nonrenewable Resources: 3 1 1 1 1 1
Max Number of Nonrenewable Resources: 3 1 1 1 1 1
Min Number of Res Requested Per Job : 0 0 0 0 0 0
Max Number of Res Requested Per Job : 10 10 10 10 10 10
Nonrenewable Resource Factor : 1.00 1.00 1.00 1.00 1.00 1.00
Minimum Resource Demand : 1 1 1 1 1 1
Maximum Resource Demand : 10 10 10 10 10 10
Minimum Nonrenew Resource Strength : 0.50 1.00 1.00 1.00 1.00 1.00
Maximum Nonrenew Resource Strength : 0.50 1.00 1.00 1.00 1.00 1.00
Min Exped Nonrenew Resource Strength: 0.50 0.00 0.00 0.00 0.00 0.00
Max Exped Nonrenew Resource Strength: 0.50 0.00 0.00 0.00 0.00 0.00
Prob of Duration Constant Demand : 0 0 0 0 0 1
**
OBJECTIVE FUNCTION -
Completion Penalty (1 = Include) : 1
Mode Costs (1 = Include) : 1
Exped Resource Costs (1 = Include) : 1
**
COSTS DATA - (*/** => Value is Fraction of Program Penalty Min/Increment
Program Penalty Minimum and Incr : 1000 1000
Project Penalty Minimum Range * : 0.50 0.75
Project Penalty Increment Range ** : 0.40 0.50
Base Mode Cost Range * : 0.05 0.10
Mode Cost Increment Range ** : 0.05 0.10
Prob of Time-Increasing Job Costs : 1.00
Prob of Time-Decreasing Job Costs : 0.00
Exped Renew Resource Cost Range * : 0.00 0.05
Exped Nonrenew Resource Cost Range *: 0.00 0.05
**
TOLERANCES -
Resource Factor : 0.1
Maximum Trials : 200
**

C-1

Appendix C. PAGER Output

This appendix provides an example of a problem file generated by the Program Attributes

Generator with Expediting Resources (PAGER). The problem statement is in PAGER format.

Problem File

**
Program Name : Test Program
Number of Projects : 4
**
 GENERAL DATA:
Proj Release Due Proj MPM Renewable Nonrenewable
 No Jobs Date Date Horizon Time Resources Resources
---- ---- ------- ---- ------- ---- --------- ------------
 0 18 1 25 54 25 3 3
 1 4 1 10 10 10 1 1
 2 4 1 10 10 10 1 1
 3 4 1 19 19 19 1 1
 4 4 1 15 15 15 1 1
**
 PROGRAM-AS-PROJECT CONVERSION DATA
SUCCESSORS:
 Proj Job No No
 No No No Mode Success Successors
--- ---- --- ---- ------- --
 1 0 1 1 4 2 6 10 14
 2 1 1 1 1 3
 3 1 2 1 1 4
 4 1 3 1 1 5
 5 1 4 1 1 18
 6 2 1 1 1 7
 7 2 2 1 1 8
 8 2 3 1 1 9
 9 2 4 1 2 18 16
 10 3 1 1 1 11
 11 3 2 1 2 12 6
 12 3 3 1 1 13
 13 3 4 1 1 18
 14 4 1 1 1 15
 15 4 2 1 1 16
 16 4 3 1 1 17
 17 4 4 1 1 18
 18 0 18 1 0
**
START-START LAGS:
Job Lag Lag Min Max
 No No Job Lag Lag
--- --- --- --- ---
 0 0 0 0 0
 7 1 15 0 7
**
MODE DATA WITH RESOURCES:
Job Mode Resource Requirements
 No No Dur R 1 R 2 R 3 R 4 R 5 R 6 R 7 N 1 N 2 N 3 N 4 N 5 N 6 N 7
--- ---- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 3 1 3 3 10 7 3 0 0 0 4 8 3 8 0 0 0
 4 1 7 2 10 6 4 0 0 0 3 9 1 3 0 0 0
 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 7 1 2 9 5 6 0 7 0 0 4 7 8 0 3 0 0
 8 1 8 9 10 9 0 1 0 0 8 5 3 0 2 0 0
 9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C-2

 11 1 9 3 9 3 0 0 2 0 9 4 1 0 0 3 0
 12 1 10 7 9 5 0 0 7 0 4 6 7 0 0 5 0
 13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 15 1 9 7 7 6 0 0 0 4 3 8 6 0 0 0 5
 16 1 6 8 8 3 0 0 0 2 4 2 8 0 0 0 6
 17 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
**
REGULAR RENEWABLE RESOURCE AVAILABILITY:
Units
R 1 R 2 R 3 R 4 R 5 R 6 R 7
---- ---- ---- ---- ---- ---- ----
 17 21 16 4 7 7 4
**
EXPEDITING RENEWABLE RESOURCE AVAILABILITY:
Units/Cost
R 1 R 2 R 3 R 4 R 5 R 6 R 7
-------- -------- -------- -------- -------- -------- --------
 8 42 11 15 7 16 0 39 0 22 0 18 0 24
**
REGULAR NONRENEWABLE RESOURCE AVAILABILITY:
Units
N 1 N 2 N 3 N 4 N 5 N 6 N 7
---- ---- ---- ---- ---- ---- ----
 39 49 37 11 5 8 11
**
EXPEDITING NONRENEWABLE RESOURCE AVAILABILITY:
Units/Cost
 N 1 N 2 N 3 N 4 N 5 N 6 N 7
-------- -------- -------- -------- -------- -------- --------
 20 22 25 15 19 40 0 22 0 11 0 36 0 9
**
COMPLETION/MODE COSTS:
Job Mode Base Incr Start End
 No No Cost Cost Time Time
--- ---- ------ ---- ----- -----
 1 1 0 0 1 30
 2 1 0 0 1 45
 3 1 64 72 1 45
 4 1 79 70 4 48
 5 1 691 425 10 54
 6 1 0 0 1 38
 7 1 61 78 1 39
 8 1 72 80 3 41
 9 1 583 457 10 48
 10 1 0 0 1 30
 11 1 64 54 1 30
 12 1 96 54 10 45
 13 1 580 497 19 54
 14 1 0 0 1 40
 15 1 72 78 1 40
 16 1 90 89 10 49
 17 1 654 487 15 54
 18 1 1000 1000 25 54
**

D-1

Appendix D. Scheduler Output

This appendix provides an example of an output file generated by the Scheduler used to solve

single-project instances of the Multi-Modal, Resource-Constrained, Multi-Project Scheduling

Problem with Generalized Precedence and Expediting Resources (MRCMPSP-GPR/EXP).

**
Program Name : Test Program
Number of Projects : 1
Date : 03/19/01
Time : 08:58:30
Number of Solutions : 1
Total Solution Time (Seconds) : .41
**
Solns Discarded-Project 1 : 37
**
Solution 1: Objective Function Value = 26391

 Job Mode Start Time
---- ---- ----------
 1 1 1
 2 1 1
 3 2 10
 4 3 14
 5 1 17
 6 1 1
 7 2 14
 8 1 1
 9 1 18
 10 1 1
 11 3 1
 12 3 5
 13 1 12
 14 1 1
 15 2 5
 16 2 2
 17 1 13
 18 1 18

Expediting Renewable Resource Usage:
 Time Units
Period R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R10 R11 R12 R13 R14 R15
------ --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
 5 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0
 6 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0
 7 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0
 8 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0

Expediting Nonrenewable Resource Usage:
Units
N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N10 N11 N12 N13 N14 N15
--- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
 0 0 0 0 0 0 5 7 6 0 0 0 1 1 0
**

E-1

Appendix E. Sample Decomposition Algorithm Output

This appendix provides an example of an output file generated by the decomposition algorithm

used to solve multi-project instances of the Multi-Modal, Resource-Constrained, Multi-Project

Scheduling Problem with Generalized Precedence and Expediting Resources.

**
Program Name : Test Program
Number of Projects : 4
Date : 03/24/01
Time : 15:03:54
Number of Solutions : 1000
Total Solution Time (Seconds) : 1.06
**
Solns Discarded-Project 0 : 1921
Solns Discarded-Project 1 : 18
Solns Discarded-Project 2 : 0
Solns Discarded-Project 3 : 0
Solns Discarded-Project 4 : 0
**
Solution 1:
Objective Function Value = 19680

 Job Mode Start Time
---- ---- ----------
 1 1 1
 2 1 1
 3 1 1
 4 1 4
 5 1 10
 6 1 9
 7 1 10
 8 1 12
 9 1 19
 10 1 1
 11 1 1
 12 1 10
 13 1 19
 14 1 1
 15 1 11
 16 1 20
 17 1 25
 18 1 25

Expediting Renewable Resource Usage:
 Time Units
Period R 1 R 2 R 3 R 4 R 5 R 6 R 7
------ --- --- --- --- --- --- ---
 0 0 0 0 0 0 0 0
 10 1 3 1 0 0 0 0
 11 6 0 1 0 0 0 0
 12 6 5 4 0 0 0 0
 13 6 5 4 0 0 0 0
 14 6 5 4 0 0 0 0
 15 6 5 4 0 0 0 0
 16 6 5 4 0 0 0 0
 17 6 5 4 0 0 0 0
 18 6 5 4 0 0 0 0
 19 6 5 4 0 0 0 0

Expediting Nonrenewable Resource Usage:
Units
N 1 N 2 N 3 N 4 N 5 N 6 N 7
--- --- --- --- --- --- ---
 0 0 0 0 0 0 0

F-1

APPENDIX F. Best Solutions to (MP) Versus (P)

Overview

This appendix provides an example showing that the k-best solutions to Problem (MP) are not

necessarily the k-best solutions to Problem (P), as described in Chapter 6. The following sections

contain: (1) the PAGER input used to generate the example, (2) the resulting problem statement,

and (3) key solutions to the problem when solved using the Scheduler and when solved using the

decomposition approach. The Scheduler solutions are the best solutions to Problem (P), while the

decomposition solutions are the best solutions to Problem (MP). Note that Solutions 1 and 2 from

both approaches are identical. Solution 1000 to (MP) is greater than that to (P). The 1000-th best

solution to (P) is not even contained in the set of the 1000 best solutions to (MP). In fact, the

objective function values of Solutions 99 and 100 from the decomposition approach straddle the

value of the 1000-th best solution to (P).

Problem Generation Input

**
SPECIFICATIONS:
**
GENERAL INFORMATION -
Problem Name : Test Program
**
PROGRAM -
Number of Projects : 4
Minimum Program Due Date Factor : 0.00
Maximum Program Due Date Factor : 0.00
**
PROJECTS - <---------FOR EACH PROJECT-------->
Minimum Number of Jobs : 4 4 4 4 4
Maximum Number of Jobs : 4 4 4 4 4
Minimum Project Release Dates : 1 1 1 1 1
Maximum Project Release Dates : 1 1 1 1 1
Minimum Project Due Date Factors : 0.00 0.00 0.00 0.00 0.00
Maximum Project Due Date Factors : 0.00 0.00 0.00 0.00 0.00
**
MODES - <---------FOR EACH PROJECT-------->
Minimum Number of Job Modes : 1 1 1 1 1
Maximum Number of Job Modes : 1 1 1 1 1
Minimum Job Duration : 1 1 1 1 1
Maximum Job Duration : 10 10 10 10 10
**
PROJECT NETWORKS - <---------FOR EACH PROJECT-------->
Minimum Number of Start Jobs : 1 1 1 1 1
Maximum Number of Start Jobs : 1000 1000 1000 1000 1000
Minimum Number of End Jobs : 1 1 1 1 1
Maximum Number of End Jobs : 1000 1000 1000 1000 1000
Maximum Successors Per Job : 1000 1000 1000 1000 1000
Maximum Predecessors Per Job : 1000 1000 1000 1000 1000
Min Start-Start Lag Fraction : 0.20 0.20 0.20 0.20 0.20
Max Start-Start Lag Fraction : 0.20 0.20 0.20 0.20 0.20
Min on Lower Bound of Lag : -0.2 -0.2 -0.2 -0.2 -0.2
Max on Lower Bound of Lag : 0.2 0.2 0.2 0.2 0.2
Min on Upper Bound of Lag : 0.4 0.4 0.4 0.4 0.4

F-2

Max on Upper Bound of Lag : 0.8 0.8 0.8 0.8 0.8
Use CNC (Arcs/Nodes) (1=Yes) : 0
Network Complexity Tolerance : 0.00
CNC (Arcs/Nodes) : 0.00 0.00 0.00 0.00 0.0
Use Thesen Restrictiveness (1=Yes) : 1
Restrictiveness Tolerance : 0.1
Thesen Restrictiveness : 0.75 0.75 0.75 0.75 0.75
**
PROGRAM NETWORK -
Min Proj Lag for Each Pair : 0.00 0.00 0.00 0.00
Max Proj Lag for Each Pair : 0.00 0.00 0.00 0.00
Maximum Inter-Proj Successors/Job : 1000
Maximum Inter-Proj Predecessors/Job : 1000
Min Start-Start Lag Fraction : 0.20
Max Start-Start Lag Fraction : 0.20
Min on Lower Bound of Lag : -0.2
Max on Lower Bound of Lag : 0.2
Min on Upper Bound of Lag : 0.4
Max on Upper Bound of Lag : 0.8
Program-Level CNC : 0.00
Program-Level Restrictiveness : 0.25
**
RENEWABLE RESOURCES - PROGRAM <----FOR EACH PROJECT---->
Min Number of Renewable Resources : 3 1 1 1 1 1
Max Number of Renewable Resources : 3 1 1 1 1 1
Min Number of Res Requested Per Job : 0 0 0 0 0 0
Max Number of Res Requested Per Job : 10 10 10 10 10 10
Renewable Resource Factor : 1.00 1.00 1.00 1.00 1.00 1.00
Minimum Per-Period Res Demand : 1 1 1 1 1 1
Maximum Per-Period Res Demand : 10 10 10 10 10 10
Minimum Renew Resource Strength : 0.50 1.00 1.00 1.00 1.00 1.00
Maximum Renew Resource Strength : 0.50 1.00 1.00 1.00 1.00 1.00
Min Exped Renew Resource Strength : 0.50 0.00 0.00 0.00 0.00 0.00
Max Exped Renew Resource Strength : 0.50 0.00 0.00 0.00 0.00 0.00
Prob of Duration Constant Demand : 0.00 0.00 0.00 0.00 0.00 0.00
**
NONRENEWABLE RESOURCES - PROGRAM <----FOR EACH PROJECT---->
Min Number of Nonrenewable Resources: 3 1 1 1 1 1
Max Number of Nonrenewable Resources: 3 1 1 1 1 1
Min Number of Res Requested Per Job : 0 0 0 0 0 0
Max Number of Res Requested Per Job : 10 10 10 10 10 10
Nonrenewable Resource Factor : 1.00 1.00 1.00 1.00 1.00 1.00
Minimum Resource Demand : 1 1 1 1 1 1
Maximum Resource Demand : 10 10 10 10 10 10
Minimum Nonrenew Resource Strength : 0.50 1.00 1.00 1.00 1.00 1.00
Maximum Nonrenew Resource Strength : 0.50 1.00 1.00 1.00 1.00 1.00
Min Exped Nonrenew Resource Strength: 0.50 0.00 0.00 0.00 0.00 0.00
Max Exped Nonrenew Resource Strength: 0.50 0.00 0.00 0.00 0.00 0.00
Prob of Duration Constant Demand : 0 0 0 0 0 1
**
OBJECTIVE FUNCTION -
Completion Penalty (1 = Include) : 1
Mode Costs (1 = Include) : 1
Exped Resource Costs (1 = Include) : 1
**
COSTS DATA - (*/** => Value is Fraction of Program Penalty Min/Increment
Program Penalty Minimum and Incr : 1000 1000
Project Penalty Minimum Range * : 0.50 0.75
Project Penalty Increment Range ** : 0.40 0.50
Base Mode Cost Range * : 0.05 0.10
Mode Cost Increment Range ** : 0.05 0.10
Prob of Time-Increasing Job Costs : 1.00
Prob of Time-Decreasing Job Costs : 0.00
Exped Renew Resource Cost Range * : 0.00 0.05
Exped Nonrenew Resource Cost Range *: 0.00 0.05
**
TOLERANCES -
Resource Factor : 0.1
Maximum Trials : 200
**

F-3

Problem File

**
Program Name : Test Program
Number of Projects : 4
**
 GENERAL DATA:
Proj Release Due Proj MPM Renewable Nonrenewable
 No Jobs Date Date Horizon Time Resources Resources
---- ---- ------- ---- ------- ---- --------- ------------
 0 18 1 25 54 25 3 3
 1 4 1 10 10 10 1 1
 2 4 1 10 10 10 1 1
 3 4 1 19 19 19 1 1
 4 4 1 15 15 15 1 1
**
 PROGRAM-AS-PROJECT CONVERSION DATA
SUCCESSORS:
 Proj Job No No
 No No No Mode Success Successors
--- ---- --- ---- ------- --
 1 0 1 1 4 2 6 10 14
 2 1 1 1 1 3
 3 1 2 1 1 4
 4 1 3 1 1 5
 5 1 4 1 1 18
 6 2 1 1 1 7
 7 2 2 1 1 8
 8 2 3 1 1 9
 9 2 4 1 2 18 16
 10 3 1 1 1 11
 11 3 2 1 2 12 6
 12 3 3 1 1 13
 13 3 4 1 1 18
 14 4 1 1 1 15
 15 4 2 1 1 16
 16 4 3 1 1 17
 17 4 4 1 1 18
 18 0 18 1 0
**
START-START LAGS:
Job Lag Lag Min Max
 No No Job Lag Lag
--- --- --- --- ---
 0 0 0 0 0
 7 1 15 0 7
**
MODE DATA WITH RESOURCES:
Job Mode Resource Requirements
 No No Dur R 1 R 2 R 3 R 4 R 5 R 6 R 7 N 1 N 2 N 3 N 4 N 5 N 6 N 7
--- ---- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 3 1 3 3 10 7 3 0 0 0 4 8 3 8 0 0 0
 4 1 7 2 10 6 4 0 0 0 3 9 1 3 0 0 0
 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 7 1 2 9 5 6 0 7 0 0 4 7 8 0 3 0 0
 8 1 8 9 10 9 0 1 0 0 8 5 3 0 2 0 0
 9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 11 1 9 3 9 3 0 0 2 0 9 4 1 0 0 3 0
 12 1 10 7 9 5 0 0 7 0 4 6 7 0 0 5 0
 13 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 14 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 15 1 9 7 7 6 0 0 0 4 3 8 6 0 0 0 5
 16 1 6 8 8 3 0 0 0 2 4 2 8 0 0 0 6
 17 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 18 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F-4

**
REGULAR RENEWABLE RESOURCE AVAILABILITY:
Units
R 1 R 2 R 3 R 4 R 5 R 6 R 7
---- ---- ---- ---- ---- ---- ----
 17 21 16 4 7 7 4
**
EXPEDITING RENEWABLE RESOURCE AVAILABILITY:
Units/Cost
R 1 R 2 R 3 R 4 R 5 R 6 R 7
-------- -------- -------- -------- -------- -------- --------
 8 42 11 15 7 16 0 39 0 22 0 18 0 24
**
REGULAR NONRENEWABLE RESOURCE AVAILABILITY:
Units
N 1 N 2 N 3 N 4 N 5 N 6 N 7
---- ---- ---- ---- ---- ---- ----
 39 49 37 11 5 8 11
**
EXPEDITING NONRENEWABLE RESOURCE AVAILABILITY:
Units/Cost
 N 1 N 2 N 3 N 4 N 5 N 6 N 7
-------- -------- -------- -------- -------- -------- --------
 20 22 25 15 19 40 0 22 0 11 0 36 0 9
**
COMPLETION/MODE COSTS:
Job Mode Base Incr Start End
 No No Cost Cost Time Time
--- ---- ------ ---- ----- -----
 1 1 0 0 1 30
 2 1 0 0 1 45
 3 1 64 72 1 45
 4 1 79 70 4 48
 5 1 691 425 10 54
 6 1 0 0 1 38
 7 1 61 78 1 39
 8 1 72 80 3 41
 9 1 583 457 10 48
 10 1 0 0 1 30
 11 1 64 54 1 30
 12 1 96 54 10 45
 13 1 580 497 19 54
 14 1 0 0 1 40
 15 1 72 78 1 40
 16 1 90 89 10 49
 17 1 654 487 15 54
 18 1 1000 1000 25 54
**

F-5

Key Solutions (1, 2, 99, 100, 1000)

Solutions to (P) – From the Scheduler

Program Name : Test Program
Number of Projects : 4
Date : 03/24/01
Time : 15:03:52
Number of Solutions : 1000
Total Solution Time (Seconds) : 1.10

Solns Discarded-Project 1 : 5328

Solution 1:
Objective Function Value = 19680

 Job Mode Start Time
---- ---- ----------
 1 1 1
 2 1 1
 3 1 1
 4 1 4
 5 1 10
 6 1 9
 7 1 10
 8 1 12
 9 1 19
 10 1 1
 11 1 1
 12 1 10
 13 1 19
 14 1 1
 15 1 11
 16 1 20
 17 1 25
 18 1 25

Expediting Renewable Resource Usage:
 Time Units
Period R 1 R 2 R 3 R 4 R 5 R 6 R 7
------ --- --- --- --- --- --- ---
 0 0 0 0 0 0 0 0
 10 1 3 1 0 0 0 0
 11 6 0 1 0 0 0 0
 12 6 5 4 0 0 0 0
 13 6 5 4 0 0 0 0
 14 6 5 4 0 0 0 0
 15 6 5 4 0 0 0 0
 16 6 5 4 0 0 0 0
 17 6 5 4 0 0 0 0
 18 6 5 4 0 0 0 0
 19 6 5 4 0 0 0 0

Expediting Nonrenewable Resource Usage:
Units
N 1 N 2 N 3 N 4 N 5 N 6 N 7
--- --- --- --- --- --- ---
 0 0 0 0 0 0 0

Solutions to (MP) – From Decomposition

Program Name : Test Program
Number of Projects : 4
Date : 03/24/01
Time : 15:03:54
Number of Solutions : 1000
Total Solution Time (Seconds) : 1.06

Solns Discarded-Project 0 : 1921
Solns Discarded-Project 1 : 18
Solns Discarded-Project 2 : 0
Solns Discarded-Project 3 : 0
Solns Discarded-Project 4 : 0

Solution 1:
Objective Function Value = 19680

 Job Mode Start Time
---- ---- ----------
 1 1 1
 2 1 1
 3 1 1
 4 1 4
 5 1 10
 6 1 9
 7 1 10
 8 1 12
 9 1 19
 10 1 1
 11 1 1
 12 1 10
 13 1 19
 14 1 1
 15 1 11
 16 1 20
 17 1 25
 18 1 25

Expediting Renewable Resource Usage:
 Time Units
Period R 1 R 2 R 3 R 4 R 5 R 6 R 7
------ --- --- --- --- --- --- ---
 0 0 0 0 0 0 0 0
 10 1 3 1 0 0 0 0
 11 6 0 1 0 0 0 0
 12 6 5 4 0 0 0 0
 13 6 5 4 0 0 0 0
 14 6 5 4 0 0 0 0
 15 6 5 4 0 0 0 0
 16 6 5 4 0 0 0 0
 17 6 5 4 0 0 0 0
 18 6 5 4 0 0 0 0
 19 6 5 4 0 0 0 0

Expediting Nonrenewable Resource Usage:
Units
N 1 N 2 N 3 N 4 N 5 N 6 N 7
--- --- --- --- --- --- ---
 0 0 0 0 0 0 0

F-6

Solution 2:
Objective Function Value = 19706

 Job Mode Start Time
---- ---- ----------
 1 1 1
 2 1 1
 3 1 1
 4 1 4
 5 1 10
 6 1 9
 7 1 10
 8 1 12
 9 1 19
 10 1 1
 11 1 1
 12 1 10
 13 1 19
 14 1 1
 15 1 10
 16 1 20
 17 1 25
 18 1 25

Expediting Renewable Resource Usage:
 Time Units
Period R 1 R 2 R 3 R 4 R 5 R 6 R 7
------ --- --- --- --- --- --- ---
 0 0 0 0 0 0 0 0
 10 8 10 7 0 0 0 0
 11 6 0 1 0 0 0 0
 12 6 5 4 0 0 0 0
 13 6 5 4 0 0 0 0
 14 6 5 4 0 0 0 0
 15 6 5 4 0 0 0 0
 16 6 5 4 0 0 0 0
 17 6 5 4 0 0 0 0
 18 6 5 4 0 0 0 0

Expediting Nonrenewable Resource Usage:
Units
N 1 N 2 N 3 N 4 N 5 N 6 N 7
--- --- --- --- --- --- ---
 0 0 0 0 0 0 0

Solution 2:
Objective Function Value = 19706

 Job Mode Start Time
---- ---- ----------
 1 1 1
 2 1 1
 3 1 1
 4 1 4
 5 1 10
 6 1 9
 7 1 10
 8 1 12
 9 1 19
 10 1 1
 11 1 1
 12 1 10
 13 1 19
 14 1 1
 15 1 10
 16 1 20
 17 1 25
 18 1 25

Expediting Renewable Resource Usage:
 Time Units
Period R 1 R 2 R 3 R 4 R 5 R 6 R 7
------ --- --- --- --- --- --- ---
 0 0 0 0 0 0 0 0
 10 8 10 7 0 0 0 0
 11 6 0 1 0 0 0 0
 12 6 5 4 0 0 0 0
 13 6 5 4 0 0 0 0
 14 6 5 4 0 0 0 0
 15 6 5 4 0 0 0 0
 16 6 5 4 0 0 0 0
 17 6 5 4 0 0 0 0
 18 6 5 4 0 0 0 0

Expediting Nonrenewable Resource Usage:
Units
N 1 N 2 N 3 N 4 N 5 N 6 N 7
--- --- --- --- --- --- ---
 0 0 0 0 0 0 0

F-7

Solution 99:
Objective Function Value = 22191

 Job Mode Start Time
---- ---- ----------
 1 1 1
 2 1 1
 3 1 1
 4 1 5
 5 1 11
 6 1 9
 7 1 10
 8 1 12
 9 1 19
 10 1 1
 11 1 1
 12 1 12
 13 1 21
 14 1 1
 15 1 10
 16 1 21
 17 1 26
 18 1 26

Expediting Renewable Resource Usage:
 Time Units
Period R 1 R 2 R 3 R 4 R 5 R 6 R 7
------ --- --- --- --- --- --- ---
 0 0 0 0 0 0 0 0
 10 1 1 2 0 0 0 0
 11 1 1 2 0 0 0 0
 12 6 5 4 0 0 0 0
 13 6 5 4 0 0 0 0
 14 6 5 4 0 0 0 0
 15 6 5 4 0 0 0 0
 16 6 5 4 0 0 0 0
 17 6 5 4 0 0 0 0
 18 6 5 4 0 0 0 0

Expediting Nonrenewable Resource Usage:
Units
N 1 N 2 N 3 N 4 N 5 N 6 N 7
--- --- --- --- --- --- ---
 0 0 0 0 0 0 0

Solution 99:
Objective Function Value = 24704

 Job Mode Start Time
---- ---- ----------
 1 1 1
 2 1 1
 3 1 1
 4 1 4
 5 1 10
 6 1 9
 7 1 10
 8 1 12
 9 1 19
 10 1 1
 11 1 1
 12 1 18
 13 1 27
 14 1 1
 15 1 12
 16 1 22
 17 1 27
 18 1 27

Expediting Renewable Resource Usage:
 Time Units
Period R 1 R 2 R 3 R 4 R 5 R 6 R 7
------ --- --- --- --- --- --- ---
 0 0 0 0 0 0 0 0
 18 6 5 4 0 0 0 0
 19 6 5 4 0 0 0 0

Expediting Nonrenewable Resource Usage:
Units
N 1 N 2 N 3 N 4 N 5 N 6 N 7
--- --- --- --- --- --- ---
 0 0 0 0 0 0 0

F-8

Solution 100:
Objective Function Value = 22196

 Job Mode Start Time
---- ---- ----------
 1 1 1
 2 1 1
 3 1 1
 4 1 4
 5 1 10
 6 1 9
 7 1 11
 8 1 13
 9 1 20
 10 1 1
 11 1 1
 12 1 11
 13 1 20
 14 1 1
 15 1 11
 16 1 21
 17 1 26
 18 1 26

Expediting Renewable Resource Usage:
 Time Units
Period R 1 R 2 R 3 R 4 R 5 R 6 R 7
------ --- --- --- --- --- --- ---
 0 0 0 0 0 0 0 0
 11 6 0 1 0 0 0 0
 12 6 0 1 0 0 0 0
 13 6 5 4 0 0 0 0
 14 6 5 4 0 0 0 0
 15 6 5 4 0 0 0 0
 16 6 5 4 0 0 0 0
 17 6 5 4 0 0 0 0
 18 6 5 4 0 0 0 0
 19 6 5 4 0 0 0 0

Expediting Nonrenewable Resource Usage:
Units
N 1 N 2 N 3 N 4 N 5 N 6 N 7
--- --- --- --- --- --- ---
 0 0 0 0 0 0 0

Solution 100:
Objective Function Value = 247 69

 Job Mode Start Time
---- ---- ----------
 1 1 1
 2 1 1
 3 1 1
 4 1 4
 5 1 10
 6 1 9
 7 1 10
 8 1 12
 9 1 19
 10 1 1
 11 1 1
 12 1 11
 13 1 20
 14 1 1
 15 1 12
 16 1 23
 17 1 28
 18 1 28

Expediting Renewable Resource Usage:
 Time Units
Period R 1 R 2 R 3 R 4 R 5 R 6 R 7
------ --- --- --- --- --- --- ---
 0 0 0 0 0 0 0 0
 12 6 5 4 0 0 0 0
 13 6 5 4 0 0 0 0
 14 6 5 4 0 0 0 0
 15 6 5 4 0 0 0 0
 16 6 5 4 0 0 0 0
 17 6 5 4 0 0 0 0
 18 6 5 4 0 0 0 0
 19 6 5 4 0 0 0 0

Expediting Nonrenewable Resource Usage:
Units
N 1 N 2 N 3 N 4 N 5 N 6 N 7
--- --- --- --- --- --- ---
 0 0 0 0 0 0 0

F-9

Solution 1000:
Objective Function Value = 24752

 Job Mode Start Time
---- ---- ----------
 1 1 1
 2 1 1
 3 1 4
 4 1 8
 5 1 14
 6 1 9
 7 1 10
 8 1 12
 9 1 19
 10 1 1
 11 1 1
 12 1 17
 13 1 26
 14 1 1
 15 1 10
 16 1 20
 17 1 25
 18 1 26

Expediting Renewable Resource Usage:
 Time Units
Period R 1 R 2 R 3 R 4 R 5 R 6 R 7
------ --- --- --- --- --- --- ---
 0 0 0 0 0 0 0 0
 10 1 1 2 0 0 0 0
 11 1 1 2 0 0 0 0
 12 1 6 5 0 0 0 0
 13 1 6 5 0 0 0 0
 14 1 6 5 0 0 0 0
 17 6 5 4 0 0 0 0
 18 6 5 4 0 0 0 0

Expediting Nonrenewable Resource Usage:
Units
N 1 N 2 N 3 N 4 N 5 N 6 N 7
--- --- --- --- --- --- ---
 0 0 0 0 0 0 0

Solution 1000:
Objective Function Value = 32760

 Job Mode Start Time
---- ---- ----------
 1 1 1
 2 1 1
 3 1 1
 4 1 5
 5 1 11
 6 1 9
 7 1 10
 8 1 12
 9 1 19
 10 1 1
 11 1 1
 12 1 17
 13 1 26
 14 1 1
 15 1 13
 16 1 26
 17 1 31
 18 1 31

Expediting Renewable Resource Usage:
 Time Units
Period R 1 R 2 R 3 R 4 R 5 R 6 R 7
------ --- --- --- --- --- --- ---
 0 0 0 0 0 0 0 0
 17 6 5 4 0 0 0 0
 18 6 5 4 0 0 0 0
 19 6 5 4 0 0 0 0

Expediting Nonrenewable Resource Usage:
Units
N 1 N 2 N 3 N 4 N 5 N 6 N 7
--- --- --- --- --- --- ---
 0 0 0 0 0 0 0

BIB-1

BIBLIOGRAPHY

Agrawal, M.K., S.E. Elmaghraby, and W.S. Herroelen. “DAGEN: A Generator of Testsets for Project

Activity Nets,” European Journal of Operational Research, 90: 376-382 (1996).

Alvares-Valdes, R., and J.M. Tamarit. “Heuristic Algorithms for Resource-Constrained Project
Scheduling: A Review and an Empirical Analysis,” in Advances in Project Scheduling. (R.
Slowinski and J. Weglarz (eds.)), Elsevier Science Publishers, Amsterdam, pp.113-134, 1989.

Ahn, T. and S.S. Erenguc. “The Resource-Constrained Project Scheduling Problem with Multiple
Crashable Modes: A Heuristic Procedure,” European Journal of Operational Research, 107:
250-259 (1998).

Balas, Egon. “Project Scheduling with Resource Constraints,” in Applications of Mathematical
Programming Techniques. New York: American Elsevier Publishing Company, Inc., 1970.

Baumol, William J., and Tibor Fabian. “Decomposition, Pricing for Decentralized and External
Economies,” Management Science, 11: 1-32 (September 1964).

Beale, E.M.L., and J.A. Tomlin. “Special Facilities in a General Mathematical Programming System
for Non-Convex Problems Using Ordered Sets of Variables,” in J. Lawrence (ed.), Proceedings
of the 5th International Conference on Operations Research, Tavistok, London.

Bean, James C. “A Lagrangian Algorithm for the Multiple Choice Integer Program,” Operations
Research, 32: 1185-1193 (September-October 1984).

Bein, W.W., J. Kamburowski, and M.F.M. Stallmann. “Optimal Reduction of Two-Terminal Directed
Graphs,” SIAM Journal on Computing, 221: 1112-1129 (1992).

Berczi, Andrew. “The Scheduling of Workpackage Networks Through Goal Programming,” XXVII
International Conference of the Institute of Management Sciences (TIMS), July 1986.

Blazewicz, J., J.K. Lenstra, and A.H.G. Rinnooy Kan. “Scheduling Projects to Resource Constraints:
Classification and Complexity,” Discrete Applied Mathematics, 5: 11-24 (1983).

Bowman, Edward H. “The Schedule-Sequencing Problem,” Operations Research, 7: 621-624 (1959).

Chalmet, Luc G., and Ludo F. Gelders. “Lagrangean Relaxations for Solving a Warehousing Model,”
Paper presented at the ORSA-TIMS Joint National Meeting, November 1976.

Christofides, Nicos, R. Alvarez-Valdes, and J.M. Tamarit. “Project Scheduling with Resource
Constraints: A Branch and Bound Approach,” European Journal of Operational Research, 29:
262-273 (1987).

Cooper, D.F. “Heuristics for Scheduling Resource-Constrained Projects: An Experimental
Investigation,” Management Science, 22: 1186-1194 (July 1976).

BIB-2

Dantzig, George B., and Philip Wolfe. “Decomposition Principle for Linear Programs,” Operations
Research, 8: 101-111 (January-February 1960).

Davis, Edward W., and George E. Heidorn. “An Algorithm for Optimal Project Scheduling Under
Multiple Resource Constraints,” Management Science, 17: B803-B816 (August 1971).

De Reyck, B. “On the Use of the Restrictiveness as a Measure of Complexity for Resource
Constrained Project Scheduling", Onderzoeksrapport Nr. 9535, Department of Applied
Economics, Katholieke Universiteit Leuven (1995).

De Reyck, B., and W. Herroelen. “On the Use of the Complexity Index as a Measure of Complexity in
Activity Networks,” European Journal of Operational Research, 91: 347-366 (1996).

----. “A Branch-and-Bound Procedure for the Resource-Constrained Project Scheduling Problem with
Generalized Precedence Relations,” European Journal of Operational Research, 111: 152-174
(1998a).

----. “An Optimal Procedure for the Resource-Constrained Project Scheduling Problem with
Discounted Cash Flows and Generalized Precedence Relations,” Computers and Operations
Research, 25: 1-17 (1998b).

----. “The Multi-Mode Resource-Constrained Project Scheduling Problem with Generalized
Precedence Relations,” European Journal of Operational Research, 119: 538-556 (1999).

Deckro, R.F., and J.E. Hebert. “Resource Constrained Project Crashing,” Omega International Journal
of Management Science, 17: 69-79 (1989).

Deckro, R.F., J.E. Hebert, and W.A. Verdini. “Project Scheduling with Work Packages,” Omega
International Journal of Management Science, 20: 169-182 (1992).

Deckro, Richard F., E.P. Winkofsky, John E. Hebert, and Roger Gagnon. “A Decomposition Approach
to Multi-Project Scheduling,” European Journal of Operational Research, 51: 110-118 (1991).

Deckro, Richard F., Michael L. Fredley, John C. Van Hove, and Victor D. Wiley. “Resource Planning
and Coordination in Multi-Project Programs.” Address to INFORMS Conference. Montreal,
Canada. September 1998.

Demeulemeester, E., B. Dodin, and W. Herroelen. “A Random Activity Network Generator,”
Operations Research, 41: 972-980 (September-October 1993).

Demeulemeester, Erik, Willy Herroelen, Wendell P. Simpson, Sami Baroum, James H. Patterson, and
Kum-Khiong Yang. “On a Paper by Christofides et al. For Solving the Multiple-Resource
Constrained, Single Project Scheduling Problem,” European Journal of Operational Research,
76: 218-228 (1994).

Demeulemeester, Erik, and Willy Herroelen. “A Branch-and-Bounding Procedure for the Generalized
Resource-Constrained Project Scheduling Problem,” Operations Research, 45: 201-212 (March-
April 1997).

BIB-3

----. “A Branch-and-Bounding Procedure for the Multiple Resource-Constrained Project Scheduling
Problem,” Management Science, 38: 1803-1818 (December 1992).

Demeulemeester, Erik. “Minimizing Resource Availability Costs in Time-Limited Project Networks,”
Management Science, 41: 1590-1598 (October 1995).

Doersch, Robert H., and James H. Patterson. “Scheduling a Project to maximize its Present Value: A
Zero-One Programming Approach,” Management Science, 23: 882-889 (April 1977).

Drexl, A., and J. Grunewald. “Nonpreemptive Multi-Mode Resource-Constrained Project
Scheduling,” IIE Transactions, 25: 74-81 (1993).

Drexl, A., R. Nissen, J.H. Patterson, and F. Salewski. ProGen/ x? -- An Instance Generator for
Resource-Constrained Project Scheduling Problems with Parially Renewable Resources and
Further Extensions. Technical Report, Institut fur Betriebswirtschaftslehre, Universitat Keil,
1997.

Elmaghraby, Salah E. Activity Networks: Project Planning and Control by Network Models. New
York: Wiley-Interscience Publication, 1977.

Elmaghraby, Salah E., and Willy S. Herroelen. “On the Measurement of Complexity in Activity
Networks,” European Journal of Operations Research, 5: 223-234 (1980).

Ferreira, J. Antunes, L. Valadares Tavares, and J. Silva Coelho. “A General Generator of Project
Networks in Termos of Their Morphological Features,” Proceedings of the Sixth International
Workshop on Project Management and Scheduling. Istanbul, Turkey, July 1998.

Fisher, Marshall L. “The Lagrangean Relaxation Method for Solving Integer Programming
Problems,” Management Science, 27: 1-18 (January 1981).

Ford, L.R., Jr., and D.R. Fulkerson. Flows in Networks. Princeton, NJ: Princeton University Press,
1962.

Geoffrion, A.M. “Lagrangean Relaxation for Integer Programming,” Mathematical Programming
Study, 2: 82-114 (1974).

Gorenstein, Samuel. “An Algorithm for Project (Job) Sequencing with Resource Constraints,”
Operations Research, 20: 835-850 (1972).

Hartmann, Sonke, and Andreas Drexl. “Project Scheduling with Multiple Modes: A Comparison of
Exact Algorithms,” Networks, 32: 283-297 (1998).

Herroelen, Willy, Bert De Reyck, and Erik Demeulemeester. “Resource-Constrained Project
Scheduling: A Survey of Recent Developments,” Computers & Operations Research, 25: 279-
302 (1998).

Icmeli, Oya. “Project Scheduling Problems: A Survey,” International Journal of Operations &
Production Management, 13: 80-91 (1993).

BIB-4

Icmeli, O. and S.S.Erenguc. “A Branch-and-Bound Procedure for the Resource-Constrained Project
Scheduling Problem with Discounted Cash Flows,” Management Science, 42: 1395-1408
(1996).

Icmeli, Oya, and Walter Rom. “Solving the Resource Constrained Project Scheduling Problem with
Optimization Subroutine Library,” Computer in Operations Research, 23: 801-817 (1996).

Kamburowski, J. “On the Minimum Cost Project Schedule,” Omega International Journal of
Management Science, 23: 463-465 (1995).

Kelley, James E., Jr. “Critical-Path Planning and Scheduling: Mathematical Basis,” Operations
Research, 9: 296-320 (1961).

Kolisch, Rainer, and Arno Sprecher. PSPLIB – A Project Scheduling Problem Library. Manuskripte
aus den Instituten Fur Betriebswirtschaftslehre der Universitat Kiel Nr. 396, Christian-
Albrechts-Universitat zu Kiel, March 1996.

Kolisch, Rainer, and Thomas Frase. “Minimizing Resource Costs When Meeting Tight Deadlines in a
Project Environment,” Abstracts of the Fifth International Workshop on Project Management
and Scheduling: 139-142, Poznan, Poland (April 1996).

Kolisch, R., and R. Padman. An Integrated Survey of Project Scheduling. Manuskripte aus den
Instituten Fur Betriebswirtschaftslehre der Universitat Kiel Nr. 463, Christian-Albrechts-
Universitat zu Kiel, July 1998.

Kolisch, Rainer, Arno Sprecher, and Andreas Drexl. “Characterization and Generation of a General
Class of Resource-Constrained Project Scheduling Problems,” Management Science, 41: 1693-
1703 (October 1995).

----. Characterization and Generation of a General Class of Resource-Constrained Project Scheduling
Problems. Manuskripte aus den Instituten Fur Betriebswirtschaftslehre Nr. 301, Christian-
Albrechts-Universitat zu Kiel, December 1992.

Kolisch, Rainer. Project Scheduling Under Resource Constraints: Efficient Heuristics for Several
Problem Classes. Heidelberg, Germany: Physica-Verlag, 1995.

Kurtulus, I., and E.W. Davis. “Multi-Project Scheduling: Catagorization of Heuristic Rules
Performance,” Management Science, 28: 161-172 (February 1982).

Kurtulus, Ibrahim S., and Subhash C. Narula. “Multi-Project Scheduling: Analysis of Project
Performance,” IIE Transactions, 17: 58-66 (1985).

Kuyumcu, Ahmet, and Alberto Garcia-Diaz. “A Decomposition Approach to Project Compression
with Concave Activity Cost Functions,” IIE Transactions, 26: 63-73 (November 1994).

Lasdon, Leon S. Optimization Theory for Large Systems. New York: Macmillan Publishing Co., Inc.,
1970.

BIB-5

Moder, J. J., C.R. Phillips, and E.W. Davis. Project Management with CPM, PERT, and Precedence
Diagramming (Third Edition). New York: Van Nostrand Reinhold Company, 1983.

Nauss, Robert M. Parametric Integer Programming. Columbia: University of Missouri Press, 1979.

Patterson, James H. “A Comparison of Exact Approaches for Solving the Multiple Constrained
Resource, Project Scheduling Problem,” Management Science, 30: 854-867 (July 1984).

Patterson, J.H., R. Slowinski, F.B. Talbot, and J. Weglarz. “An Algorithm for a General Class of
Precedence and Resource Constrained Scheduling Problems,” Advances in Project Scheduling.
(R. Slowinski and J. Weglarz (eds.)), Elsevier Science Publishers, Amsterdam, pp. 3-28, 1989.

----. “Computational Experience with a Backtracking Algorithm for Solving a General Class of
Precedence and Resource-Constrained -Scheduling Problems,” European Journal of Operational
Research, 49: 68-79 (1990).

Patterson, James H., and Walter D. Huber. “A Horizon-Varying, Zero-One Approach to Project
Scheduling,” Management Science, 20: 990-998 (February 1974).

Patterson, James H., and Glenn W. Roth. “Scheduling a Project Under Multiple Resource Constraints:
A Zero-One Programming Approach,” AIIE Transations, 8: 449-455 (1976).

Phillips, Steve, Jr., and Mohamed I. Dessouky. “Solving the Project Time/Cost Tradeoff Problem
Using the Minimal Cut Concept,” Management Science, 24: 393-400 (December 1977).

Pritsker, A. Alan, Lawrence J. Watters, and Philip M. Wolfe. “Multiproject Scheduling with Limited
Resources: A Zero-one Programming Approach,” Management Science: 16: 93-108 (September
1969).

Salewski, Frank, Andreas Schirmer, and Andreas Drexl. “Project Scheduling Under Resource and
Mode Identity Constraints: Model, Complexity, Methods, and Application,” European Journal of
Operations Research, 102: 88-110 (1997).

----. Project Scheduling Under Resource and Mode Identity Constraints. Part I: Model, Complexity
Status, and Methods. Unpublished Manuscript. Kiel, Germany, January 1996a.

----. Project Scheduling Under Resource and Mode Identity Constraints. Part II: An Application to
Audit-Staff Scheduling. Unpublished Manuscript. Kiel, Germany, January 1996b.

Schwindt, C. ProGen/max: A New Problem Generator for Different Resource- Constrained Project
Scheduling Problems with Minimal and Maximal Time Lags. Technical Report 449, Institut fur
Wirtschaftstheorie und Operations Research, Universitat Karlsruhe, July 1995.

----. Generation of Resource-Constrained Project Scheduling Problems with Minimal and Maximal
Time Lags. Technical Report 489, Institut fur Wirtschaftstheorie und Operations Research,
Universitat Karlsruhe, November 1996.

Shtub, Avraham, Jonathan F. Bard, and Shlomo Globerson. Project Management: Engineering,
Technology, and Implementation. Englewood Cliffs, NJ: Prentice Hall, 1994.

BIB-6

Speranza, M. Grazia, and Carlo Vercellis. “Hierarchical Models for Multi-Project Planning and
Scheduling,” European Journal of Operational Research, 64: 312-325 (1993).

Sprecher, Arno. Resource-Constrained Project Scheduling: Exact Methods for the Multi-Mode Case.
Berlin: Springer-Verlag, 1994.

Sprecher, Arno, and Andreas Drexl. “Multi-Mode, Resource-Constrained Project Scheduling by a
Simple, General, and Powerful Sequencing Algorithm,” European Journal of Operational
Research, 107: 431-450 (1998).

----. Solving Multi-Mode Resource-Constrained Project Scheduling Problems by a Simple, General,
and Powerful Sequencing Algorithm. Part I: Theory. Unpublished Manuscript. Kiel, Germany,
January 1996a.

----. Solving Multi-Mode Resource-Constrained Project Scheduling Problems by a Simple, General,
and Powerful Sequencing Algorithm. Part II: Computation. Unpublished Manuscript. Kiel,
Germany, January 1996b.

Sprecher, Arno, Rainer Kolisch, and Andreas Drexl. “Semi-active, active, and non-delay schedules for
the resource-constrained project scheduling problem,” European Journal of Operational
Research, 80: 94-102 (1995).

Sprecher, Arno, Sonke Hartmann, and Andreas Drexl. “An Exact Algorithm for Project Scheduling
with Multiple Modes,” OR Spektrum, 19: 195-203 (1997).

Stinson, Joel P., Edward W. Davis, and Basheer M. Khumawala. “Multiple Resource-Constrained
Scheduling Using Branch-and-Bound,” AIIE Transactions, 10: 252-259 (September 1978).

Sweeney, Dennis J., and Richard A. Murphy. “A Method of Decomposition for Integer Programs,”
Operations Research, 27: 1128-1141 (1979).

----. “Branch and Bound Methods for Multi-Item Scheduling,” Operations Research, 29: 853-864
(September-October 1981).

Talbot, F. Brian, and James H. Patterson. “An Efficient Integer Programming Algorithm with Network
Cuts for Solving Resource-Constrained Scheduling Problems,” Management Science, 24: 1163-
1174 (July 1978).

Talbot, F. Brian. “Resource-Constrained Project Scheduling with Time-Resource Tradeoffs: The
Nonpreemptive Case,” Management Science, 28: 1197-1210 (October 1982).

Thesen, A. “Measures of the Restrictiveness of Project Networks, “ Networks, 7: 193-208 (1977).

Tripathy, Arabinda. “School Timetabling – A Case in Large Binary Integer Linear Programming,”
Management Science,30: 1473-1489 (December 1984).

Valdes, Jacobo, Robert E. Tarjan, and Eugene L. Lawler. “The Recognition of Series Parallel
Digraphs,” SIAM Journal on Computing, 11: 298-313 (May 1982).

BIB-7

Van Hove, John C. An Integer Program Decomposition Approach to Combat Planning. PhD
dissertation, Air Force Institute of Technology, Wright-Patterson AFB OH 45433, July 1998.

Vercellis, Carlo. “Constrained Multi-Project Planning Problems: A Lagrangean Decomposition
Approach,” European Journal of Operational Research, 78: 267-275 (1994).

Wheeler, Bob. “The Mother of All Random Number Generators/Marsaglia.” Electronic Mail.
19:32:08EDT, 28 Oct 1994.

Wiley, Victor D. Optimization Analysis for Design and Planning of Multi-Project Programs. MS
thesis, AFIT/GOR/ENS/96M-18. School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, March 1996.

Wiley, Victor D., Richard F. Deckro, and Jack A. Jackson, Jr. “Optimization Analysis for Design and
Planning of Multi-Project Programs,” European Journal of Operational Research, 107: 492-506
(1998).

Williams, H.P. Model Building in Mathematical Programming, 2d Ed. Chichester: John Wiley and
Sons, 1985.

Wu, Y., and C. Li. “Minimal Cost Project Networks: the Cut Set Parallel Difference Method,” Omega
International Journal of Management Science, 22: 401-407 (1994).

Zamani, M. Reza. “A High Performance Near-Exact Algorithm for the Resource-Constrained Project
Scheduling Problem,” European Journal of Operational Research (Under Review).

VITA-1

Vita

Major Michael L. Fredley was born in Hammond, Indiana. He graduated from Mason City High

School in Mason City, Iowa, in May 1982. He pursued his undergraduate studies at the University of

Utah where he graduated cum laude with a Bachelor of Science degree in Mathematics in June 1989.

He was commissioned through AFROTC Detachment 850 at the University of Utah where he was

recognized as a Distinguished Graduate and nominated for a Regular Commission.

Major Fredley’s first Air Force assignment was to the 49th Test Squadron, Barksdale AFB,

Louisiana, where he served as a Weapons Test Analyst for the B-52 and B-1B weapon systems. In

August 1993, he entered the Graduate School of Engineering, Air Force Institute of Technology. He

graduated in May 1995 with a Masters of Science degree in Operations Research and was designated

as a Distinguished Graduate. He then entered the Ph.D. program in Operations Research where he

reached candidacy before being reassigned to the Air Force Studies and Analyses Agency at the

Pentagon in October 1998. Major Fredley is currently assigned to Yongsan Garrison, Seoul, Korea,

where he serves as the Air Analyst to Combined Forces Command and United States Forces – Korea.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

25-09-2001
2. REPORT TYPE

Doctoral Dissertation
3. DATES COVERED (From – To)

Jun 1997 – Sep 2001
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE
A DECOMPOSITION APPROACH FOR THE MULTI-MODAL, RESOURCE-
CONSTRAINED, MULTI-PROJECT SCHEDULING PROBLEM WITH
GENERALIZED PRECEDENCE AND EXPEDITING RESOURCES

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Michael L. Fredley, Major, USAF

 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 P Street, Building 640
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/DS/ENS/01-02

10. SPONSOR/MONITOR’S ACRONYM(S)
AFOSR

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Air Force Office of Scientific Research
 Attn: Major Juan R. Vasquez
 801 N. Randolph St., Room 933 Comm: (703) 696-8431
 Arlington, VA 22203 -1977 e-mail: juan.vasquez@afosr.af.mil

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

The field of project scheduling has received a gre at deal of study for many years with a steady evolution of problem complexity and solution
methodologies. As solution methodologies and technologies improve, increasingly complex, real -world problems are addressed, presenting
researchers a continuing chal lenge to find ever more effective means for approaching project scheduling. This dissertation introduces a project
scheduling problem which is applicable across a broad spectrum of real -world situations. The problem is based on the well -known Resource-
Constrained Project Scheduling Problem, extended to include multiple modes, generalized precedence, and expediting resources. The problem
is further extended to include multiple projects which have generalized precedence, renewable and nonrenewable resource s, and expediting
resources at the program level.

The problem presented is one not previously addressed in the literature nor is it one to which the existing specialized project scheduling
methodologies can be directly applied. This dissertation present s a decomposition approach for solving the problem, including algorithms for
solving the decomposed subproblems and the master problem. This dissertation also describes a methodology for generating instances of the
new problem, extending the way existing problem generators describe and construct network structures and this class of problem. The
methodologies presented are demonstrated through extensive empirical testing.

15. SUBJECT TERMS
CPM, Critical Path Method, Decomposition, Network, Network Generator, Program, Program Management, Project, Project
Generator, Project Management, Project Scheduling, Scheduling, Sweeney -Murphy Decomposition

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Richard F. Deckro, DBA (ENS)

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

270

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4325, e-mail: Richard.Deckro@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

